Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 166 - 174
DOI:
10.17576/mjas-2018-2202-01
A REVIEW ON
EXTRACTION SOLVENTS IN THE DISPERSIVE LIQUID-LIQUID MICROEXTRACTION
(Sebuah Ulasan
Terhadap Pelarut Pengekstrakan dalam Pengekstrakan Mikro Cecair-Cecair Serakan)
Tan Yeong Hwang1*, Chai Mee Kin1,
Wong Ling Shing2
1College of Engineering,
Universiti Tenaga Nasional, Jalan
Ikram-Uniten, 43000 Kajang, Selangor, Malaysia
2Faculty of Science, Technology, Engineering and
Mathematics (FOSTEM),
INTI International University, Persiaran Perdana BBN,
Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
*Corresponding author: yeonghwang_113@hotmail.com
Received:
26 August 2017; Accepted: 29 January 2018
Abstract
Dispersive liquid-liquid microextraction (DLLME) is
a novel sample preparation technique that has higher level of extraction
efficiency by means of relying on microvolumes of solvents. It has gained
considerable attention from researchers owing to several advantages such as its
simplicity, shorter extraction time, lower cost and higher enrichment factor.
In conventional DLLME, chlorinated solvents are widely used as the extraction
solvents. Notwithstanding, most of these solvents are reportedly toxic and environmentally-unfriendly.
Many related studies in recent years have focused on the use of nontoxic or low
toxic extraction solvents and better practical procedures, which have helped
improve the extraction efficiency. The aim of this review is to discuss the
development of low toxic extraction solvent used recently in the DLLME. The
possible improvement of extraction solvent from the green analytical chemistry
perspectives is also discussed.
Keywords: extraction solvents, dispersive liquid-liquid
microextraction, green analytical chemistry
Abstrak
Pengekstrakan mikro cecair-cecair serakan (DLLME) merupakan teknik
penyediaan sampel novel yang mempunyai lebih tinggi kecekapan pengekstrakan
dengan menggunakan mikroliter pelarut. Teknik ini telah mendapat perhatian
daripada penyelidik kerana beberapa kelebihan seperti ringkas, masa
pengekstrakan yang lebih pendek, kos yang lebih rendah dan faktor pengayaan
yang lebih tinggi. Dalam DLLME konvensional, pelarut berklorin digunakan secara
meluas sebagai pelarut pengekstrakan. Namun, kebanyakan pelarut ini dilaporkan
toksik dan tidak mesra alam. Dalam tahun kebelakangan ini, banyak kajian yang
berkaitan telah fokus kepada penggunaan pelarut pengekstrakan yang tidak
bertoksik atau rendah toksik dan praktikal prosedur yang lebih baik telah
meningkatkan kecekapan pengekstrakan. Tujuan kajian ini adalah untuk
membincangkan perkembangan pelarut pengekstrakan rendah toksik yang digunakan
dalam DLLME terkini. Penambahbaikan pelarut pengekstrakan dari perspektif kimia
analisis hijau juga dibincangkan.
Kata kunci: pelarut pengekstrakan,
pengekstrakan mikro cecair-cecair serakan, kimia analitik hijau
References
1. Saraji, M. and Boroujeni, M. K. (2013). Recent
developments in dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 406(8): 2027 - 2066.
2. Sarafraz-Yazdi, A. and Amiri, A. (2010).
Liquid-phase microextraction. Trends in
Analytical Chemistry, 29(1): 1 – 14.
3. Rezaee, M., Assadi, Y., Hosseini, M. R. M.,
Aghaee, E., Ahmadi, F. and Berijani, S. (2006). Determination of organic
compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1): 1
– 9.
4. Habibi, H., Mohammadi, A. and Kamankesh, M.
(2017). Application and optimization of dispersive liquid-liquid
microextraction coupled with high-performance liquid chromatography for
sensitive determination of furfural and hydroxymethyl furfural in jarred and
canned baby-foods. Nutrition and Food
Sciences Research, 4(1): 25 – 32.
5. Pastor-Belda, M., Garrido, I., Campillo, N.,
Viñasa, P., Hellín, P., Flores, P. and Fenoll, J. (2015). Dispersive
liquid-liquid microextraction for the determination of new generation
pesticides in soils by liquid chromatography and tandem mass spectrometry. Journal of Chromatography A, 1394: 1 – 8.
6. Chisvert, A., Benedé, J. L., Peiró, M., Pedrón,
I. and Salvador, A. (2017). Determination of N-nitrosodiethanolamine in
cosmetic products by reversed-phase dispersive liquid-liquid microextraction
followed by liquid chromatography. Talanta,
166: 81 –
86.
7. Asghari, A., Saffarzadeh, Z., Bazregar, M.,
Rajabi, M. and Boutorabi, L. (2017). Low-toxic air-agitated liquid-liquid
microextraction using a solidifiable organic solvent followed by gas
chromatography for analysis of amitriptyline and imipramine
in human plasma
and wastewater samples. Microchemical
Journal, 130: 122 –
128.
8. Liang, P. and Sang, H. B. (2008). Determination
of trace lead in biological and water samples with dispersive liquid–liquid
microextraction preconcentration. Analytical
Biochemistry, 380(1): 21 – 25.
9. Zang, H. X. Wu, Q. H., Zhang, M. Y., Xi, G. H.
and Zhi, W. (2009). Developments of dispersive liquid-liquid microextraction
technique. Chinese Journal of Analytical
Chemistry, 37(2): 161 – 168.
10. Zgoła-Grzeskowiak, A. and Grzeskowiak, T.
(2011). Dispersive liquid-liquid microextraction. Trends in Analytical Chemistry, 30(9): 1382 – 1399.
11. Viñas, P., Campillo, N., López-García, I. and
Hernández-Córdoba, M. (2013). Dispersive liquid–liquid microextraction in food
analysis: A critical review. Analytical
and Bioanalytical Chemistry, 406(8): 2067 – 2099.
12. Campillo, N., Viñas, P., Šandrejová, J. and
Andruch, V. (2016). Ten years of dispersive liquid-liquid microextraction and
derived techniques. Applied Spectroscopy
Reviews, 52(4): 267 –
415.
13. Leong, M. I., Fuh, M. R. and Huang, S. D.
(2014). Beyond dispersive liquid–liquid microextraction. Journal of Chromatography A, 1335: 2 – 14.
14. Li, M. J. Zhang, H. Y., Liu, X. Z., Chui, C. Y.
and Shi, Z. H. (2015). Progress of extraction solvent dispersion strategies for
dispersive liquid-liquid microextraction. Chinese
Journal of Analytical Chemistry, 43(8): 1231 – 1240.
15. Al-Saidi, H. M. and Emara, A. A. A. (2014). The
recent developments in dispersive liquid–liquid microextraction for
preconcentration and determination of inorganic analytes. Journal of Saudi Chemical Society, 18(6): 745 – 761.
16. Ahmad, W., Al-Sibaai, A. A., Bashammakh, A. S.,
Alwael, H. and El-Shahawi, M. S. (2015). Recent advances in dispersive
liquid-liquid microextraction for pesticide analysis. Trends in Analytical Chemistry, 72: 181 – 192.
17. Alcantara, G. S. K., Calixto, L. A., de Moraes,
L. A. B., Queiroz, R. H. C., de Oliveira, A. R. M. and de Gaitani, C. M.
(2016). Determination of levetiracetam in human plasma by dispersive
liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Journal of Analytical Methods in Chemistry,
2016: 1 – 12.
18. Tobiszewski, M., Bigus, P. and Namiesnik, J.
(2014). Determination of parent and methylated polycyclic aromatic hydrocarbons
in water samples by dispersive liquid–liquid microextraction two-dimensional
gas chromatography–time-of-flight mass spectrometry. Analytical Method, 6(17): 6678 – 6687.
19. Liu, J. Y., Lu, W. H. Liu, H. T., Wu, X. Q., Li,
J. H. and Chen, L. X. (2016). Dispersive liquid-liquidmicroextraction for four
phenolic environmental estrogens in water samples followed by determination
using capillary electrophoresis. Electrophoresis,
37(19): 2502 – 2508.
20. Larki, A. (2017). A novel application of carbon
dots for colorimetric determination of fenitrothion insecticide based on the
microextraction method. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy, 173: 1 – 5.
21. U. S. National Library of Medicine (2016).
Hazardous Substances Data Bank. https://toxnet.nlm.nih.gov/ newtoxnet/hsdb.htm.
[Access online 2 July 2017].
22. Hu, X. Z., Wu, J. H. and Feng, Y. Q. (2010).
Molecular complex-based dispersive liquid–liquid microextraction: Analysis of
polar compounds in aqueous solution. Journal
of Chromatography A, 1217(45): 7010 – 7016.
23. Farajzadeh, M. A. Djozan, D., Afshar, M. R. and
Norouzi, J. (2012). Determination of phthalate esters in cow milk samples using
dispersive liquid–liquid microextraction coupled with gas chromatography
followed by flame ionization and mass spectrometric detection. Journal of Separation Science, 35(5-6):
742 – 749.
24. Pena, M. T., Vecino-Bello, X., Casais, M. C.,
Mejuto, M. C. and Cela, R. (2012). Optimization of a dispersive liquid–liquid
microextraction method for the analysis of benzotriazoles and benzothiazoles in
water samples. Analytical and Bioanalytical
Chemistry, 402(4): 1679 –
1695.
25. Emídio, E. S., da Silva, C. P. and de Marchi, M.
R. R. (2015). Determination of estrogenic mycotoxins in environmental water
samples by low-toxicity dispersive liquid-liquid microextraction and liquid
chromatography-tandem mass spectrometry. Journal
of Chromatography A: 1391(1): 1 – 8.
26. Peng, G. L. Lu, Y. He, Q., Mmereki, D., Zhou, G.
M., Chen, J. H. and Tang, X. H. (2016). Dispersive liquid–liquid
microextraction using low-toxic solvent for the determination of heavy metals
in water samples by inductively coupled plasma–mass spectrometry. Journal of AOAC International, 99(1):
260 – 266.
27. Leong, M. I., Chang, C. C., Fuh, M. R. and
Huang, S. D. (2010). Low toxic dispersive liquid–liquid microextraction using
halosolvents for extraction of polycyclic aromatic hydrocarbons in water
samples. Journal of Chromatography A,
1217(34): 5455 – 5461.
28. Chai, M. K., Premla, D. C. and Wong, L. S.
(2016). Modified dispersive liquid-liquid microextraction using green solvent
for determination of polycyclic aromatic hydrocarbons (PAHs) in vegetable
samples. Malaysian Journal of Analytical
Sciences, 20(1): 14 – 20.
29. Chemical Book (2016).
http://www.chemicalbook.com/CAS_75-30-9.htm. [Access online 2 July 2017].
30. Guo, L. and Lee, H. K. (2011). Low-density
solvent-based solvent demulsification dispersive liquid–liquid microextraction
for the fast determination of trace levels of sixteen priority polycyclic
aromatic hydrocarbons in environmental water samples. Journal of Chromatography A, 1218(31): 5040 – 5046.
31. Chen, X. C., You, X. W., Liu, F. M. and Zhang,
X. (2015). Low-density solvent based vortex-assisted surfactant enhanced
emulsification microextraction with a home-made extraction device for the
determination of four herbicide residues in river water. Analytical Method, 7(22): 9513 – 9519.
32. Barrett, C. A., Orban, D. A., Seebeck, S. E.,
Lowe, L. E. and Owens, J. E. (2015). Development of a low-density-solvent
dispersive liquid–liquid microextraction with gas chromatography and mass
spectrometry method for the quantitation of tetrabromobisphenol-A from dust. Journal of Separation Science, 38: 2500 – 2509.
33. Fatemi, M. H., Hadjmohammadi, M. E. and Shakeri,
P. (2014). Evaluation of alcoholic-assisted dispersive liquid–liquid
microextraction of bisphenol A in water samples using an experimental design. Acta Chromatographica, 26 (3): 401 – 412.
34. Aghamohammadi, M., Shahdousti, P. and Harooni,
B. (2016). Ultrasound-assisted emulsification microextraction followed by gas
chromatography–flame ionization detection for urinary methylmalonic acid
determination. Microchemical Journal,
124: 188 –
194.
35. Çabuk, H. and Köktürk, M. (2013). Low density
solvent-based dispersive liquid-liquid microextraction for the determination of
synthetic antioxidants in beverages by high-performance liquid chromatography. The Scientific World Journal, 2013: 1 – 8.
36. Bai, X. Z. Zhang, T., Li, H. P. and Yang, Z. G.
(2016). Simultaneous dispersive liquid–liquid microextraction based on a
low-density solvent and derivatization followed by gas chromatography for the
simultaneous determination of chloroanisoles and the precursor
2,4,6-trichlorophenol in water samples. Journal
of Separation Science, 39: 2146 – 2155.
37. Xu, H., Ding, Z. Q., Lv, L. L., Song, D. D. and
Feng, Y. Q. (2009). A novel dispersive liquid–liquid microextraction based on
solidification of floating organic droplet method for determination of polycyclic
aromatic hydrocarbons in aqueous samples. Analytica
Chimica Acta, 636: 28 – 33.
38. Rezaee, M., Yamini, Y., Khanchi, A., Faraji, M.
and Saleh, A. (2010). A simple and rapid new dispersive liquid–liquid
microextraction based on solidification of floating organic drop combined with
inductively coupled plasma-optical emission spectrometry for preconcentration
and determination of aluminium in water samples. Journal of Hazardous Materials, 178: 766 – 770.
39. Peng, G. L., He, Q., Mmereki, D., Zhou, G. M.,
Pan, W. L., Gu, L., Fan, L. L. and Mao, Y. F. (2015). Vortex-assisted
liquid–liquid microextraction using a low-toxicity solvent for the
determination of five organophosphorus pesticides in water samples by
high-performance liquid chromatography. Journal
of Separation Science, 38 (20): 3487 – 3493.
40. Kocúrová, L., Balogh, I. S., Šandrejová, J. and
Andruch, V. (2012). Recent advances in dispersive liquid–liquid microextraction
using organic solvents lighter than water. A review. Microchemical Journal, 102: 11 – 17.
41. Leong, M. I. and Huang, S. D. (2008). Dispersive
liquid–liquid microextraction method based on solidification of floating
organic drop combined with gas chromatography with electron-capture or mass
spectrometry detection. Journal of
Chromatography A, 1211: 8 – 12.
42. Xu, H., Ding, Z. Q., Lv, L. L., Song, D. D. and
Feng, Y. Q. (2009). A novel dispersive liquid–liquid microextraction based on
solidification of floating organic droplet method for determination of
polycyclic aromatic hydrocarbons in aqueous samples. Analytica Chimica Acta, 636(1): 28 – 33.
43. Asadollahi, T., Dadfarnia, S., Shabani, A. M. H.
and Amirkavei, M. (2015). Separation/preconcentration and determination of
quercetin in food samples by dispersive liquid–liquid microextraction based on
solidification of floating organic drop -flow injection spectrophotometry. Journal of Food Science and Technology,
52(2): 1103 –
1109.
44. Bolzan, C. M.
Caldas, S. S., Guimarães, B. S., and Primel, E. G. (2016). Dispersive
liquid–liquid microextraction based on solidification of floating organic
droplet for the determination of triazine and triazoles in mineral water
samples. Journal of Separation Science,
39(17): 3410 –
3417.
45. Guiñez, M., Martinez, L. D., Fernandez, L. and
Cerutti, S. (2017). Dispersive liquid–liquid microextraction based on
solidification of floating organic drop and fluorescence detection for the
determination of nitrated polycyclic aromatic hydrocarbons in aqueous samples. Microchemical Journal, 131: 1 – 8.
46. Nojavan, S., Gorji, T., Davarani, S. S. H. and
Morteza-Najarian, A. (2014). Solvent selection in ultrasonic-assisted
emulsification microextraction: Comparison between high- and low-density
solvents by means of novel type of extraction vessel. Analytica Chimica Acta, 838: 51 – 57.
47. Ho, T. D., Zhang, C., Hantao, L. W., and
Anderson, J. L. (2014). Ionic liquids in analytical chemistry: Fundamentals,
advances, and perspectives. Analytical
Chemistry, 86: 262 –
285.
48. Vekariya, R. L. (2017). A review of ionic
liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, 227: 44 – 60.
49. Ghandi, K. (2014). A review of ionic liquids,
their limits and applications. Green and
Sustainable Chemistry, 4: 44 – 53.
50. Hu, H., Liu, B. Z., Yang, J., Lin, Z. M. and
Gan, W. (2016). Sensitive determination of trace urinary
3-hydroxybenzo[a]pyrene using ionic liquids-based dispersive liquid–liquid
microextraction followed by chemical derivatization and high performance liquid
chromatography–high resolution tandem mass spectrometry. Journal of Chromatography B, 1027: 200 – 206.
51. Cacho, J. I., Campillo, N., Viñas, P. and
Hernández-Córdoba, M. (2016). Improved sensitivity gas chromatography–mass
spectrometry determination of parabens in waters using ionic liquids. Talanta, 146: 568 – 574.
52. Peng, B., Zhang, J. H., Wu, C. H., Li, S. Q.,
Li, Y. B., Gao, H. X., Lu R. H. and Zhou W. F. (2014). Use of ionic
liquid-based dispersive liquid–liquid microextraction and high-performance
liquid chromatography to detect formaldehyde in air, water, and soil samples. Journal of Liquid Chromatography &
Related Technologies, 37(6): 815 – 828.
53. Gong, A. Q. and Zhu, X. S. (2015). Dispersive
solvent-free ultrasound-assisted ionic liquid dispersive liquid–liquid
microextraction coupled with HPLC for determination of ulipristal acetate. Talanta, 131: 603 – 608.
54. Albishri, H. M., Aldawsari, H. A. M. and
El-Hady, D. A. (2016). Ultrasound-assisted temperature-controlled ionic liquid
dispersive liquid phase microextraction combined with reversed phase liquid
chromatography for determination of organophosphorus pesticides in water
samples. Electrophoresis, 37 (39):
2462 –
2469.
55. Trujillo-Rodríguez M. J., Rocío-Bautista, P.,
Pino, V. and Afonso, A. M. (2013). Ionic liquids in dispersive liquid-liquid
microextraction. Trends in Analytical
Chemistry, 51: 87 –
106.
56. Poole, C. F. and Poole, S. K. (2010). Extraction
of organic compounds with room temperature ionic liquids. Journal of Chromatography A, 1217 (16): 2268 – 2286.
57. Ma, X. G., Huang, M. H., Li, Z. H. and Wu, J. M.
(2011). Hollow fiber supported liquid-phase microextraction using ionic liquid
as extractant for preconcentration of benzene, toluene, ethylbenzene and
xylenes from water sample with gas chromatography-hydrogen flame ionization
detection. Journal of Hazardous Materials,
194: 24 –29.
58. Armenta, S. Garrigues, S. and de la Guardia, M.
(2008). Green analytical chemistry. Trends
in Analytical Chemistry, 27(6): 497 – 511.
59. Armenta, S., Garrigues, S. and de la Guardia, M.
(2015). The role of green extraction techniques in Green analytical chemistry. Trends in Analytical Chemistry, 71: 2 – 8.
60. Welch, C. J. Wu, N. J. M., Biba, M., Hartman,
R., Brkovic, T., Gong. X. Y., Helmy, R., Schafer, W., Cuff, J., Pirzada, Z. and Zhou,
L. L. (2010). Greening analytical chromatography. Trends
in Analytical Chemistry, 29 (7): 667 – 680.
61. Wang, L. L., Zhang, D. F., Xu, X. and Zhang, L.
(2016). Application of ionic liquid-based dispersive liquid phase
microextraction for highly sensitive simultaneous determination of three
endocrine disrupting compounds in food packaging. Food
Chemistry, 197: 754 –
760.
62. Sheikhian, L. and Shirafkan, M. (2016).
Temperature‑assisted ionic liquid‑based dispersive liquid–liquid
microextraction with following back‑extraction for HPLC/UV–Vis determination of
3‑indole acetic acid in pea plants. Journal
of Iranian Chemical Society, 13(5): 903 – 911.
63. Guo, L., Chia, S. S. and Lee, H. K. (2016).
Automated agitation-assisted demulsification dispersive liquid-liquid
microextraction. Analytical Chemistry,
88 (5): 2548 – 2552.
64. Medinskaia, K., Vakh, C., Aseeva, D., Andruch,
V., Moskvin, L. and Bulatov, A. (2016). A fully automated effervescence
assisted dispersive liquid–liquid microextraction based on a stepwise injection
system. Determination of antipyrine in saliva samples. Analytica Chimica Acta, 902: 129 – 134.
65. Timofeeva, I., Timofeev, S., Moskvin, L. and
Bulatov, A. (2017). A dispersive liquid-liquid microextraction using a
switchable polarity dispersive solvent. Automated HPLC-FLD determination of
ofloxacin in chicken meat. Analytica
Chimica Acta, 949: 35 – 42.
66. Alexovič, M., Horstkotte, N., Šrámková, I.
Solich, P. and Sabo, S. (2017). Automation of dispersive liquid-liquid
microextraction and related techniques. Approaches based on flow, batch,
flowbatch and in-syringe modes. Trends in
Analytical Chemistry, 86: 39 – 55.