Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 166 - 174

DOI: 10.17576/mjas-2018-2202-01

 

 

 

A REVIEW ON EXTRACTION SOLVENTS IN THE DISPERSIVE LIQUID-LIQUID MICROEXTRACTION

 

(Sebuah Ulasan Terhadap Pelarut Pengekstrakan dalam Pengekstrakan Mikro Cecair-Cecair Serakan)

 

Tan Yeong Hwang1*, Chai Mee Kin1, Wong Ling Shing2

 

1College of Engineering,

Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia

2Faculty of Science, Technology, Engineering and Mathematics (FOSTEM),

INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

*Corresponding author:  yeonghwang_113@hotmail.com

 

 

Received: 26 August 2017; Accepted: 29 January 2018

 

 

Abstract

Dispersive liquid-liquid microextraction (DLLME) is a novel sample preparation technique that has higher level of extraction efficiency by means of relying on microvolumes of solvents. It has gained considerable attention from researchers owing to several advantages such as its simplicity, shorter extraction time, lower cost and higher enrichment factor. In conventional DLLME, chlorinated solvents are widely used as the extraction solvents. Notwithstanding, most of these solvents are reportedly toxic and environmentally-unfriendly. Many related studies in recent years have focused on the use of nontoxic or low toxic extraction solvents and better practical procedures, which have helped improve the extraction efficiency. The aim of this review is to discuss the development of low toxic extraction solvent used recently in the DLLME. The possible improvement of extraction solvent from the green analytical chemistry perspectives is also discussed.  

 

Keywords:  extraction solvents, dispersive liquid-liquid microextraction, green analytical chemistry

 

Abstrak

Pengekstrakan mikro cecair-cecair serakan (DLLME) merupakan teknik penyediaan sampel novel yang mempunyai lebih tinggi kecekapan pengekstrakan dengan menggunakan mikroliter pelarut. Teknik ini telah mendapat perhatian daripada penyelidik kerana beberapa kelebihan seperti ringkas, masa pengekstrakan yang lebih pendek, kos yang lebih rendah dan faktor pengayaan yang lebih tinggi. Dalam DLLME konvensional, pelarut berklorin digunakan secara meluas sebagai pelarut pengekstrakan. Namun, kebanyakan pelarut ini dilaporkan toksik dan tidak mesra alam. Dalam tahun kebelakangan ini, banyak kajian yang berkaitan telah fokus kepada penggunaan pelarut pengekstrakan yang tidak bertoksik atau rendah toksik dan praktikal prosedur yang lebih baik telah meningkatkan kecekapan pengekstrakan. Tujuan kajian ini adalah untuk membincangkan perkembangan pelarut pengekstrakan rendah toksik yang digunakan dalam DLLME terkini. Penambahbaikan pelarut pengekstrakan dari perspektif kimia analisis hijau juga dibincangkan.

 

Kata kunci:  pelarut pengekstrakan, pengekstrakan mikro cecair-cecair serakan, kimia analitik hijau

 

References

1.       Saraji, M. and Boroujeni, M. K. (2013). Recent developments in dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 406(8): 2027 - 2066.

2.       Sarafraz-Yazdi, A. and Amiri, A. (2010). Liquid-phase microextraction. Trends in Analytical Chemistry, 29(1): 1 14.

3.       Rezaee, M., Assadi, Y., Hosseini, M. R. M., Aghaee, E., Ahmadi, F. and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1): 1 – 9.

4.       Habibi, H., Mohammadi, A. and Kamankesh, M. (2017). Application and optimization of dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for sensitive determination of furfural and hydroxymethyl furfural in jarred and canned baby-foods. Nutrition and Food Sciences Research, 4(1): 25 32.

5.       Pastor-Belda, M., Garrido, I., Campillo, N., Viñasa, P., Hellín, P., Flores, P. and Fenoll, J. (2015). Dispersive liquid-liquid microextraction for the determination of new generation pesticides in soils by liquid chromatography and tandem mass spectrometry. Journal of Chromatography A, 1394: 1 8.

6.       Chisvert, A., Benedé, J. L., Peiró, M., Pedrón, I. and Salvador, A. (2017). Determination of N-nitrosodiethanolamine in cosmetic products by reversed-phase dispersive liquid-liquid microextraction followed by liquid chromatography. Talanta, 166: 81 86.

7.       Asghari, A., Saffarzadeh, Z., Bazregar, M., Rajabi, M. and Boutorabi, L. (2017). Low-toxic air-agitated liquid-liquid microextraction using a solidifiable organic solvent followed by gas chromatography for analysis of amitriptyline  and  imipramine  in  human  plasma and wastewater samples. Microchemical Journal, 130: 122 128.

8.       Liang, P. and Sang, H. B. (2008). Determination of trace lead in biological and water samples with dispersive liquid–liquid microextraction preconcentration. Analytical Biochemistry, 380(1): 21 25.

9.       Zang, H. X. Wu, Q. H., Zhang, M. Y., Xi, G. H. and Zhi, W. (2009). Developments of dispersive liquid-liquid microextraction technique. Chinese Journal of Analytical Chemistry, 37(2): 161 168.

10.    Zgoła-Grzeskowiak, A. and Grzeskowiak, T. (2011). Dispersive liquid-liquid microextraction. Trends in Analytical Chemistry, 30(9): 1382 1399.

11.    Viñas, P., Campillo, N., López-García, I. and Hernández-Córdoba, M. (2013). Dispersive liquid–liquid microextraction in food analysis: A critical review. Analytical and Bioanalytical Chemistry, 406(8): 2067 2099.

12.    Campillo, N., Viñas, P., Šandrejová, J. and Andruch, V. (2016). Ten years of dispersive liquid-liquid microextraction and derived techniques. Applied Spectroscopy Reviews, 52(4): 267 415.

13.    Leong, M. I., Fuh, M. R. and Huang, S. D. (2014). Beyond dispersive liquid–liquid microextraction. Journal of Chromatography A, 1335: 2 – 14.

14.    Li, M. J. Zhang, H. Y., Liu, X. Z., Chui, C. Y. and Shi, Z. H. (2015). Progress of extraction solvent dispersion strategies for dispersive liquid-liquid microextraction. Chinese Journal of Analytical Chemistry, 43(8): 1231 1240.

15.    Al-Saidi, H. M. and Emara, A. A. A. (2014). The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes. Journal of Saudi Chemical Society, 18(6): 745 761.

16.    Ahmad, W., Al-Sibaai, A. A., Bashammakh, A. S., Alwael, H. and El-Shahawi, M. S. (2015). Recent advances in dispersive liquid-liquid microextraction for pesticide analysis. Trends in Analytical Chemistry, 72: 181 192.

17.    Alcantara, G. S. K., Calixto, L. A., de Moraes, L. A. B., Queiroz, R. H. C., de Oliveira, A. R. M. and de Gaitani, C. M. (2016). Determination of levetiracetam in human plasma by dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Journal of Analytical Methods in Chemistry, 2016: 1 12.

18.    Tobiszewski, M., Bigus, P. and Namiesnik, J. (2014). Determination of parent and methylated polycyclic aromatic hydrocarbons in water samples by dispersive liquid–liquid microextraction two-dimensional gas chromatography–time-of-flight mass spectrometry. Analytical Method, 6(17): 6678 6687.

19.    Liu, J. Y., Lu, W. H. Liu, H. T., Wu, X. Q., Li, J. H. and Chen, L. X. (2016). Dispersive liquid-liquidmicroextraction for four phenolic environmental estrogens in water samples followed by determination using capillary electrophoresis. Electrophoresis, 37(19): 2502 2508.

20.    Larki, A. (2017). A novel application of carbon dots for colorimetric determination of fenitrothion insecticide based on the microextraction method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173: 1 5.

21.    U. S. National Library of Medicine (2016). Hazardous Substances Data Bank. https://toxnet.nlm.nih.gov/ newtoxnet/hsdb.htm. [Access online 2 July 2017].

22.    Hu, X. Z., Wu, J. H. and Feng, Y. Q. (2010). Molecular complex-based dispersive liquid–liquid microextraction: Analysis of polar compounds in aqueous solution. Journal of Chromatography A, 1217(45): 7010 7016.

23.    Farajzadeh, M. A. Djozan, D., Afshar, M. R. and Norouzi, J. (2012). Determination of phthalate esters in cow milk samples using dispersive liquid–liquid microextraction coupled with gas chromatography followed by flame ionization and mass spectrometric detection. Journal of Separation Science, 35(5-6): 742 749.

24.    Pena, M. T., Vecino-Bello, X., Casais, M. C., Mejuto, M. C. and Cela, R. (2012). Optimization of a dispersive liquid–liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Analytical and Bioanalytical Chemistry, 402(4): 1679 1695.

25.    Emídio, E. S., da Silva, C. P. and de Marchi, M. R. R. (2015). Determination of estrogenic mycotoxins in environmental water samples by low-toxicity dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A: 1391(1): 1 – 8.

26.    Peng, G. L. Lu, Y. He, Q., Mmereki, D., Zhou, G. M., Chen, J. H. and Tang, X. H. (2016). Dispersive liquid–liquid microextraction using low-toxic solvent for the determination of heavy metals in water samples by inductively coupled plasma–mass spectrometry. Journal of AOAC International, 99(1): 260 266.

27.    Leong, M. I., Chang, C. C., Fuh, M. R. and Huang, S. D. (2010). Low toxic dispersive liquid–liquid microextraction using halosolvents for extraction of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography A, 1217(34): 5455 – 5461.

28.    Chai, M. K., Premla, D. C. and Wong, L. S. (2016). Modified dispersive liquid-liquid microextraction using green solvent for determination of polycyclic aromatic hydrocarbons (PAHs) in vegetable samples. Malaysian Journal of Analytical Sciences, 20(1): 14 20.

29.    Chemical Book (2016). http://www.chemicalbook.com/CAS_75-30-9.htm. [Access online 2 July 2017].

30.    Guo, L. and Lee, H. K. (2011). Low-density solvent-based solvent demulsification dispersive liquid–liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples. Journal of Chromatography A, 1218(31): 5040 5046.

31.    Chen, X. C., You, X. W., Liu, F. M. and Zhang, X. (2015). Low-density solvent based vortex-assisted surfactant enhanced emulsification microextraction with a home-made extraction device for the determination of four herbicide residues in river water. Analytical Method, 7(22): 9513 9519.

32.    Barrett, C. A., Orban, D. A., Seebeck, S. E., Lowe, L. E. and Owens, J. E. (2015). Development of a low-density-solvent dispersive liquid–liquid microextraction with gas chromatography and mass spectrometry method for the quantitation of tetrabromobisphenol-A from dust. Journal of Separation Science, 38: 2500 2509.

33.    Fatemi, M. H., Hadjmohammadi, M. E. and Shakeri, P. (2014). Evaluation of alcoholic-assisted dispersive liquid–liquid microextraction of bisphenol A in water samples using an experimental design. Acta Chromatographica, 26 (3): 401 412.

34.    Aghamohammadi, M., Shahdousti, P. and Harooni, B. (2016). Ultrasound-assisted emulsification microextraction followed by gas chromatography–flame ionization detection for urinary methylmalonic acid determination. Microchemical Journal, 124: 188 194. 

35.    Çabuk, H. and Köktürk, M. (2013). Low density solvent-based dispersive liquid-liquid microextraction for the determination of synthetic antioxidants in beverages by high-performance liquid chromatography. The Scientific World Journal, 2013: 1 8.

36.    Bai, X. Z. Zhang, T., Li, H. P. and Yang, Z. G. (2016). Simultaneous dispersive liquid–liquid microextraction based on a low-density solvent and derivatization followed by gas chromatography for the simultaneous determination of chloroanisoles and the precursor 2,4,6-trichlorophenol in water samples. Journal of Separation Science, 39: 2146 2155.

37.    Xu, H., Ding, Z. Q., Lv, L. L., Song, D. D. and Feng, Y. Q. (2009). A novel dispersive liquid–liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Analytica Chimica Acta, 636: 28 33.

38.    Rezaee, M., Yamini, Y., Khanchi, A., Faraji, M. and Saleh, A. (2010). A simple and rapid new dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with inductively coupled plasma-optical emission spectrometry for preconcentration and determination of aluminium in water samples. Journal of Hazardous Materials, 178: 766 770.

39.    Peng, G. L., He, Q., Mmereki, D., Zhou, G. M., Pan, W. L., Gu, L., Fan, L. L. and Mao, Y. F. (2015). Vortex-assisted liquid–liquid microextraction using a low-toxicity solvent for the determination of five organophosphorus pesticides in water samples by high-performance liquid chromatography. Journal of Separation Science, 38 (20): 3487 3493.

40.    Kocúrová, L., Balogh, I. S., Šandrejová, J. and Andruch, V. (2012). Recent advances in dispersive liquid–liquid microextraction using organic solvents lighter than water. A review. Microchemical Journal, 102: 11 17.

41.    Leong, M. I. and Huang, S. D. (2008). Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. Journal of Chromatography A, 1211: 8 12.

42.    Xu, H., Ding, Z. Q., Lv, L. L., Song, D. D. and Feng, Y. Q. (2009). A novel dispersive liquid–liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Analytica Chimica Acta, 636(1): 28 33.

43.    Asadollahi, T., Dadfarnia, S., Shabani, A. M. H. and Amirkavei, M. (2015). Separation/preconcentration and determination of quercetin in food samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop -flow injection spectrophotometry. Journal of Food Science and Technology, 52(2): 1103 1109.

44.    Bolzan, C. M.  Caldas, S. S., Guimarães, B. S., and Primel, E. G. (2016). Dispersive liquid–liquid microextraction based on solidification of floating organic droplet for the determination of triazine and triazoles in mineral water samples. Journal of Separation Science, 39(17): 3410 3417.

45.    Guiñez, M., Martinez, L. D., Fernandez, L. and Cerutti, S. (2017). Dispersive liquid–liquid microextraction based on solidification of floating organic drop and fluorescence detection for the determination of nitrated polycyclic aromatic hydrocarbons in aqueous samples. Microchemical Journal, 131: 1 8.

46.    Nojavan, S., Gorji, T., Davarani, S. S. H. and Morteza-Najarian, A. (2014). Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel. Analytica Chimica Acta, 838: 51 57.

47.    Ho, T. D., Zhang, C., Hantao, L. W., and Anderson, J. L. (2014). Ionic liquids in analytical chemistry: Fundamentals, advances, and perspectives. Analytical Chemistry, 86: 262 285.

48.    Vekariya, R. L. (2017). A review of ionic liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, 227: 44 60.

49.    Ghandi, K. (2014). A review of ionic liquids, their limits and applications. Green and Sustainable Chemistry, 4: 44 53.

50.    Hu, H., Liu, B. Z., Yang, J., Lin, Z. M. and Gan, W. (2016). Sensitive determination of trace urinary 3-hydroxybenzo[a]pyrene using ionic liquids-based dispersive liquid–liquid microextraction followed by chemical derivatization and high performance liquid chromatography–high resolution tandem mass spectrometry. Journal of Chromatography B, 1027: 200 206.

51.    Cacho, J. I., Campillo, N., Viñas, P. and Hernández-Córdoba, M. (2016). Improved sensitivity gas chromatography–mass spectrometry determination of parabens in waters using ionic liquids. Talanta, 146: 568 574.

52.    Peng, B., Zhang, J. H., Wu, C. H., Li, S. Q., Li, Y. B., Gao, H. X., Lu R. H. and Zhou W. F. (2014). Use of ionic liquid-based dispersive liquid–liquid microextraction and high-performance liquid chromatography to detect formaldehyde in air, water, and soil samples. Journal of Liquid Chromatography & Related Technologies, 37(6): 815 828.

53.    Gong, A. Q. and Zhu, X. S. (2015). Dispersive solvent-free ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction coupled with HPLC for determination of ulipristal acetate. Talanta, 131: 603 608.

54.    Albishri, H. M., Aldawsari, H. A. M. and El-Hady, D. A. (2016). Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid phase microextraction combined with reversed phase liquid chromatography for determination of organophosphorus pesticides in water samples. Electrophoresis, 37 (39): 2462 2469.

55.    Trujillo-Rodríguez M. J., Rocío-Bautista, P., Pino, V. and Afonso, A. M. (2013). Ionic liquids in dispersive liquid-liquid microextraction. Trends in Analytical Chemistry, 51: 87 106.

56.    Poole, C. F. and Poole, S. K. (2010). Extraction of organic compounds with room temperature ionic liquids. Journal of Chromatography A, 1217 (16): 2268 2286.

57.    Ma, X. G., Huang, M. H., Li, Z. H. and Wu, J. M. (2011). Hollow fiber supported liquid-phase microextraction using ionic liquid as extractant for preconcentration of benzene, toluene, ethylbenzene and xylenes from water sample with gas chromatography-hydrogen flame ionization detection. Journal of Hazardous Materials, 194: 24 29.

58.    Armenta, S. Garrigues, S. and de la Guardia, M. (2008). Green analytical chemistry. Trends in Analytical Chemistry, 27(6): 497 511.

59.    Armenta, S., Garrigues, S. and de la Guardia, M. (2015). The role of green extraction techniques in Green analytical chemistry. Trends in Analytical Chemistry, 71: 2 8.

60.    Welch, C. J. Wu, N. J. M., Biba, M., Hartman, R., Brkovic, T., Gong. X. Y., Helmy, R., Schafer, W., Cuff, J., Pirzada,  Z. and  Zhou,  L. L. (2010).  Greening  analytical  chromatography.  Trends in Analytical Chemistry, 29 (7): 667 680.

61.    Wang, L. L., Zhang, D. F., Xu, X. and Zhang, L. (2016). Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging.  Food Chemistry, 197: 754 760.

62.    Sheikhian, L. and Shirafkan, M. (2016). Temperature‑assisted ionic liquid‑based dispersive liquid–liquid microextraction with following back‑extraction for HPLC/UV–Vis determination of 3‑indole acetic acid in pea plants. Journal of Iranian Chemical Society, 13(5): 903 911.

63.    Guo, L., Chia, S. S. and Lee, H. K. (2016). Automated agitation-assisted demulsification dispersive liquid-liquid microextraction. Analytical Chemistry, 88 (5): 2548 – 2552.

64.    Medinskaia, K., Vakh, C., Aseeva, D., Andruch, V., Moskvin, L. and Bulatov, A. (2016). A fully automated effervescence assisted dispersive liquid–liquid microextraction based on a stepwise injection system. Determination of antipyrine in saliva samples. Analytica Chimica Acta, 902: 129 134.

65.    Timofeeva, I., Timofeev, S., Moskvin, L. and Bulatov, A. (2017). A dispersive liquid-liquid microextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat. Analytica Chimica Acta, 949: 35 42.

66.    Alexovič, M., Horstkotte, N., Šrámková, I. Solich, P. and Sabo, S. (2017). Automation of dispersive liquid-liquid microextraction and related techniques. Approaches based on flow, batch, flowbatch and in-syringe modes. Trends in Analytical Chemistry, 86: 39 55.

 

 




Previous                    Content                    Next