Malaysian Journal of Analytical Sciences Vol 22 No 2
(2018): 279 - 285
DOI:
10.17576/mjas-2018-2202-13
SYNTHESIS OF ALUMINA-CaO-KI CATALYST FOR THE PRODUCTION
OF BIODIESEL FROM RUBBER SEED OIL
(Sintesis Mangkin Alumina-CaO-KI untuk Penghasilan Biodiesel
daripada Minyak Biji Getah)
Zainal Kifli Abdul Razak1*, Shahida Hanum Kamarullah 1,
Siti Norhafiza Mohd Khazaai 1,2, Gaanty Pragas Maniam 2
1Faculty of Applied Sciences,
Universiti Teknologi MARA Pahang, 26400 Bandar Tun
Abdul Razak, Jengka, Pahang, Malaysia
2Faculty of Industrial
Sciences & Technology,
Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300
Gambang, Pahang, Malaysia
*Corresponding
author: zainalk@uitm.edu.my
Received: 4
December 2016; Accepted: 1 December 2017
Abstract
In
this research, biodiesel was produced by
transesterification of rubber seed oil with methanol catalyzed by three types
of alumina-supported catalyst. The catalysts were Al2O3-CaO,
Al2O3-KI, and Al2O3-CaO-KI.
The catalysts were prepared by heating a
mixture of alumina and the corresponding salt in a furnace at 700 oC.
Transesterification reactions were carried out at 65 °C using a mixture of rubber seed oil: methanol of mass
ratio 1:9 with different catalyst loadings between 0 and 3.5%. The optimum
catalyst loading was at 2.0% for all
types of catalyst and Al2O3-CaO-KI gave the highest yield
(91.6%) followed by Al2O3-KI (90.7%) and Al2O3-CaO
(63.5%). The catalyst Al2O3-CaO-KI also gave high
biodiesel yields over a wider range of catalyst loadings compared to the other
two catalysts. Reactions were also carried out at different temperatures (25,
40 and 65°C). It was observed
that the yield increased drastically with increasing reaction temperature. At
all temperatures the Al2O3-CaO-KI
catalyst gave the highest yield. Therefore, the study showed that among these
three catalysts the most productive was Al2O3-CaO-KI, (100:30:35).
Keywords: alumina-supported catalyst, biodiesel, rubber
seed oil, transesterification
Abstrak
Dalam kajian ini, biodiesel
dihasilkan melalui tindak balas transesterifikasi minyak biji getah dengan metanol
menggunakan tiga jenis mangkin tersokong alumina. Mangkin-mangkin tersebut
adalah Al2O3-CaO, Al2O3-KI dan Al2O3-CaO-KI.
Mangkin-mangkin itu disediakan dengan pemanasan campuran alumina dan garam yang
berkaitan di dalam relau pada suhu 700 °C. Tindak balas transesterifikasi dijalankan
pada suhu 65 °C dengan menggunakan campuran minyak biji getah: metanol dengan
nisbah jisim 1:9 dengan beban mangkin yang berbeza di antara 0 hingga 3.5%.
Beban mangkin yang optimum adalah 2.0% untuk semua jenis mangkin dan mangkin Al2O3-CaO-KI
memberikan peratus hasil yang paling tinggi (91.6%) diikuti oleh Al2O3-KI
(90.7%) dan Al2O3-CaO (63.5%). Mangkin Al2O3-CaO-KI
juga memberikan peratus hasil biodiesel yang tinggi pada julat beban mangkin
yang lebih besar berbanding dengan dua mangkin yang lain. Tindak balas juga
dijalankan pada suhu-suhu yang berbeza (25, 40 dan 65 °C). Didapati bahawa
peratus hasil meningkat secara mendadak dengan peningkatan suhu tindak balas.
Pada sebarang suhu mangkin Al2O3-CaO-KI memberikan peratus
hasil yang paling tinggi. Oleh itu, kajian ini menunjukkan bahawa di antara
ketiga-tiga jenis mangkin ini Al2O3-CaO-KI, (100:30:35)
adalah yang paling produktif.
Kata kunci: mangkin tersokong alumina, biodiesel, minyak
biji getah, transesterifikasi
References
1.
Patel,
A., Brahmkhatri, V. and Singh, N. (2013). Biodiesel production by
esterification of free fatty acid over sulfated zirconia. Renewable Energy, 51: 227–233.
2.
Lee, D., Park,
Y. and Lee, K. (2009). Heterogeneous base catalysts for transesterification in
biodiesel synthesis. Catalysis Surveys
from Asia, 13: 63-77.
3.
Jegannathan,
K. R., Eng-Seng, C. and Ravindra, P. (2011). Economic assessment of biodiesel
production: Comparison of alkali and biocatalyst processes. Renewable and Sustainable Energy Reviews,
15: 745–751.
4.
Talebian-Kiakalaieh,
A., Amin, N. A. S. and Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104: 683–710.
5.
Helwani, Z.,
Othman, M. R., Aziz, N. and Kim, J. (2009). Solid heterogeneous catalysts for
transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363: 1–10.
6.
Gombotz, K.,
Parette, R., Austic, G., Kannan, D. and Matson, J. V. (2012). MnO and TiO solid
catalysts with low-grade feedstocks for biodiesel production. Fuel, 92: 9–15.
7.
Kouzu, M., Hidaka,
J., Komichi, Y., Nakano, H. and Yamamoto, M. (2009). A process to transesterify
vegetable oil with methanol in the presence of quicklime bit functioning as solid base catalyst. Fuel, 88: 1983–1990.
8.
Xie, W. and Li, H. (2006). Alumina-supported
potassium iodide as a heterogeneous catalyst for biodiesel production from
soybean oil. Journal of Molecular
Catalysis A: Chemical, 255: 1-9.
9.
Zabeti, M., Daud, W. M. A. W.
and Aroua, M. K. (2010). Biodiesel production using
alumina-supported calcium oxide: An optimization study. Fuel Processing Technology, 91: 243–248.
10.
Asri,
N. P., Savitri, S. D., Suprapto, B. K. and Roesyadi, A. (2012). Development of heterogeneous alumina supported
base catalyst for biodiesel production. Environment
and Chemistry, 46: 116-121.
11.
Maniam,
G. P., Hindryawati, N., Nurfitria, I., Manaf, I. S. A., Ramachandran, N. and
Rahim, M. H. A. (2015). Utilization of
waste fat from cat fish (Pangasius)
in methyl esters preparation using CaO derived from waste marine barnacle and bivalve clam as solid catalysts. Journal of the Taiwan Institute of Chemical
Engineers, 49: 58–66.
12.
Umdu,
E. S. and Seker, E. (2012). Transesterification of sunflower oil on single step
sol-gel made Al2O3 supported CaO catalysts: Effect of
basic strength and basicity on turnover frequency. Bioresource Technology, 106: 178-181.
13.
Pasupuletey,
N. Gunda, K., Liu, Y., Rempel, G. L. and Ng, F. T. T. (2013). Production of biodiesel from soybean oil on
CaO/Al2O3 solid base catalyst. Applied Catalysis: A General, 452: 189-202.
14.
Islam, A.,
Taufiq-Yap, Y. H., Chu, C. M., Ravindra, P. and Chan, E. S. (2013).
Transesterification of palm oil using KF and NaNO3 catalysts
supported on spherical millimetric γ-Al2O3. Renewable
Energy. 59: 23–29.
15.
Farooq, M. and
Ramli, A., Subbarao, D. (2013). Biodiesel production from waste cooking oil
using bifunctional heterogeneous solid catalysts. Journal of Cleaner
Production. 59: 131–140.
16.
Evangelista,
J. P. D. C., Gondim, A. D., Souza, D. L. and Araujo, A. S. (2016).
Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel
production: A review. Renewable and
Sustainable Energy Reviews, 59: 887-894.
17.
Boey,
P.-L., Maniam, G. P. and Hamid, S. A. (2009). Biodiesel production via
transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresource Technology, 100 (24): 6362-6368.
18.
Nur, Z. A. S.,
Taufiq-Yap, Y. H., Nizah, M. F. R. ,
Teo, S. H., Syazwani, O. N. and Islam, A. (2014). Production of biodiesel from palm
oil using modified Malaysian natural dolomites. Energy Conversion and Management, 78: 738-744.
19.
Xie, W. and Zhao, L. (2013). Production of
biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Conversion and Management, 76:
55–62.
20.
Dias,
M. J., Alvim-Ferraz, M. C. M., Almeida, M. F., Diaz, J. D. M., Polo, M. S. and
Utrilla, J. R. (2012). Selection of
heterogeneous catalysts for biodiesel production from animal fat. Fuel, 94: 418-425.