Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 279 - 285

DOI: 10.17576/mjas-2018-2202-13

 

 

 

SYNTHESIS OF ALUMINA-CaO-KI CATALYST FOR THE PRODUCTION OF BIODIESEL FROM RUBBER SEED OIL

 

(Sintesis Mangkin Alumina-CaO-KI untuk Penghasilan Biodiesel daripada Minyak Biji Getah)

 

Zainal Kifli Abdul Razak1*, Shahida Hanum Kamarullah 1, Siti Norhafiza Mohd Khazaai 1,2, Gaanty Pragas Maniam 2

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak, Jengka, Pahang, Malaysia

2Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia

 

*Corresponding author:  zainalk@uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

In this research, biodiesel was produced by transesterification of rubber seed oil with methanol catalyzed by three types of alumina-supported catalyst. The catalysts were Al2O3-CaO, Al2O3-KI, and Al2O3-CaO-KI. The catalysts were prepared by heating a mixture of alumina and the corresponding salt in a furnace at 700 oC. Transesterification reactions were carried out at 65 °C using a mixture of rubber seed oil: methanol of mass ratio 1:9 with different catalyst loadings between 0 and 3.5%. The optimum catalyst loading was at 2.0% for all types of catalyst and Al2O3-CaO-KI gave the highest yield (91.6%) followed by Al2O3-KI (90.7%) and Al2O3-CaO (63.5%). The catalyst Al2O3-CaO-KI also gave high biodiesel yields over a wider range of catalyst loadings compared to the other two catalysts. Reactions were also carried out at different temperatures (25, 40 and 65°C). It was observed that the yield increased drastically with increasing reaction temperature. At all temperatures the Al2O3-CaO-KI catalyst gave the highest yield. Therefore, the study showed that among these three catalysts the most productive was Al2O3-CaO-KI, (100:30:35).

 

Keywords:  alumina-supported catalyst, biodiesel, rubber seed oil, transesterification

 

Abstrak

Dalam kajian ini, biodiesel dihasilkan melalui tindak balas transesterifikasi minyak biji getah dengan metanol menggunakan tiga jenis mangkin tersokong alumina. Mangkin-mangkin tersebut adalah Al2O3-CaO, Al2O3-KI dan Al2O3-CaO-KI. Mangkin-mangkin itu disediakan dengan pemanasan campuran alumina dan garam yang berkaitan di dalam relau pada suhu 700 °C. Tindak balas transesterifikasi dijalankan pada suhu 65 °C dengan menggunakan campuran minyak biji getah: metanol dengan nisbah jisim 1:9 dengan beban mangkin yang berbeza di antara 0 hingga 3.5%. Beban mangkin yang optimum adalah 2.0% untuk semua jenis mangkin dan mangkin Al2O3-CaO-KI memberikan peratus hasil yang paling tinggi (91.6%) diikuti oleh Al2O3-KI (90.7%) dan Al2O3-CaO (63.5%). Mangkin Al2O3-CaO-KI juga memberikan peratus hasil biodiesel yang tinggi pada julat beban mangkin yang lebih besar berbanding dengan dua mangkin yang lain. Tindak balas juga dijalankan pada suhu-suhu yang berbeza (25, 40 dan 65 °C). Didapati bahawa peratus hasil meningkat secara mendadak dengan peningkatan suhu tindak balas. Pada sebarang suhu mangkin Al2O3-CaO-KI memberikan peratus hasil yang paling tinggi. Oleh itu, kajian ini menunjukkan bahawa di antara ketiga-tiga jenis mangkin ini Al2O3-CaO-KI, (100:30:35) adalah yang paling produktif.

 

Kata kunci:  mangkin tersokong alumina, biodiesel, minyak biji getah, transesterifikasi

 

References

1.       Patel, A., Brahmkhatri, V. and Singh, N. (2013). Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renewable Energy, 51: 227–233.

2.       Lee, D., Park, Y. and Lee, K. (2009). Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catalysis Surveys from Asia, 13: 63-77.

3.       Jegannathan, K. R., Eng-Seng, C. and Ravindra, P. (2011). Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes. Renewable and Sustainable Energy Reviews, 15: 745–751.

4.       Talebian-Kiakalaieh, A., Amin, N. A. S. and Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104: 683–710.

5.       Helwani, Z., Othman, M. R., Aziz, N. and Kim, J. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Applied Catalysis A: General, 363: 1–10.

6.       Gombotz, K., Parette, R., Austic, G., Kannan, D. and Matson, J. V. (2012). MnO and TiO solid catalysts with low-grade feedstocks for biodiesel production. Fuel, 92: 9–15.

7.       Kouzu, M., Hidaka, J., Komichi, Y., Nakano, H. and Yamamoto, M. (2009). A process to transesterify vegetable oil with methanol in the presence of quicklime bit functioning as solid base catalyst. Fuel, 88: 1983–1990.

8.       Xie, W. and Li, H. (2006). Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical, 255: 1-9.

9.       Zabeti, M., Daud, W. M. A. W. and Aroua, M. K. (2010). Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Processing Technology, 91: 243–248.

10.    Asri, N. P., Savitri, S. D., Suprapto, B. K. and Roesyadi, A. (2012). Development of heterogeneous alumina supported base catalyst for biodiesel production. Environment and Chemistry, 46: 116-121.

11.    Maniam, G. P., Hindryawati, N., Nurfitria, I., Manaf, I. S. A., Ramachandran, N. and Rahim, M. H. A. (2015). Utilization of waste fat from cat fish (Pangasius) in methyl esters preparation using CaO derived from waste marine  barnacle  and  bivalve clam as solid catalysts. Journal of the Taiwan Institute of Chemical Engineers, 49: 58–66.

12.    Umdu, E. S. and Seker, E. (2012). Transesterification of sunflower oil on single step sol-gel made Al2O3 supported CaO catalysts: Effect of basic strength and basicity on turnover frequency. Bioresource Technology, 106: 178-181.

13.    Pasupuletey, N. Gunda, K., Liu, Y., Rempel, G. L. and Ng, F. T. T. (2013). Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalyst. Applied Catalysis: A General, 452: 189-202.

14.    Islam, A., Taufiq-Yap, Y. H., Chu, C. M., Ravindra, P. and Chan, E. S. (2013). Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric γ-Al2O3. Renewable Energy. 59: 23–29.

15.    Farooq, M. and Ramli, A., Subbarao, D. (2013). Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. Journal of Cleaner Production. 59: 131–140.

16.    Evangelista, J. P. D. C., Gondim, A. D., Souza, D. L. and Araujo, A. S. (2016). Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 59: 887-894.

17.    Boey, P.-L., Maniam, G. P. and Hamid, S. A. (2009). Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresource Technology, 100 (24): 6362-6368.

18.    Nur, Z. A. S., Taufiq-Yap, Y. H., Nizah, M. F. R. , Teo,  S. H., Syazwani,  O. N. and Islam,  A. (2014). Production of biodiesel from palm oil using modified Malaysian natural dolomites. Energy Conversion and Management, 78: 738-744.

19.    Xie, W. and Zhao, L. (2013). Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Conversion and Management, 76: 55–62.

20.    Dias, M. J., Alvim-Ferraz, M. C. M., Almeida, M. F., Diaz, J. D. M., Polo, M. S. and Utrilla, J. R. (2012). Selection of heterogeneous catalysts for biodiesel production from animal fat. Fuel, 94: 418-425.




Previous                    Content                    Next