Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 286 - 295
DOI:
10.17576/mjas-2018-2202-14
APPLICATION OF PROTEOLYTIC ENZYME
IN HIGH AMMONIATED NATURAL RUBBER LATEX
(Aplikasi
Enzim Proteolitik dalam Lateks Getah Asli Berammonia Tinggi)
Aziana
Abu Hassan1*, Norazreen Abd Rahman2, Nurulhuda Abdullah1,
Roslinda Sajari3, Mok Kok Lang1
1Technology and Engineering Division
2Production Development Division
3Genomics and Bioinformatics Centre
Malaysian Rubber
Board, 47000 Sg. Buloh, Selangor, Malaysia
*Corresponding
author: aziana@lgm.gov.my
Received: 4
December 2016; Accepted: 1 December 2017
Abstract
Natural rubber
latex (NRL) with ‘low protein content’ is regarded as
alternative raw material for less allergenic latex. However, these ‘low protein
latexes’ have been reported to give uncertain and at times poorer mechanical
properties in which could be due to its method of preparation. Therefore this
study was conducted to strengthen the fundamental approach of making ‘low
protein latex’ via enzymatic treatment. Proteolytic enzymes were employed to
digest the proteins and inactivate some of the proteins function. The aim was
to study the effect of enzymatic treatment towards the nitrogen content in NRL that is mainly contributed by the presence of proteins. Impact on the mechanical properties due to
changes in the native proteins was also evaluated. Results show that
proteolytic enzyme at low concentration effectively hydrolysed the protein
molecules. However, nitrogen content in NRL serum was simultaneously increased
with increasing enzyme concentration.
This could be due to the tendency of enzyme to form new peptides bonds
known also as aminolysis.
Interestingly, the amount of allergenic proteins
was observed to decrease proportionally with the upsurge of enzyme
concentration, suggesting deactivation of allergenicity by the enzyme. These
preliminary results indicate a potential approach to produce low allergenic
risk NRL products.
Keywords: low protein latex, proteolytic enzyme, protein
allergy, mechanical properties
Abstrak
Lateks getah asli
(LGA) dengan 'kandungan protein rendah' dianggap sebagai bahan mentah
alternatif untuk mengurangkan risiko alahan terhadap protein LGA. Walau
bagaimanapun, 'lateks protein rendah' menyebabkan sifat mekanikal lateks
tersebut terjejas dan bergantung juga kepada kaedah penyediaannya. Oleh itu
kajian ini dijalankan untuk mengukuhkan pendekatan asas dalam membuat 'lateks
protein rendah' melalui rawatan enzimatik. Enzim proteolitik digunakan untuk
mencerna protein dan menyahaktifkan beberapa fungsi protein. Tujuannya adalah
untuk mengkaji kesan rawatan enzimatik ke atas kandungan nitrogen dalam LGA
yang secara tidak langsung dapat mengesan kehadiran protein. Perubahan secara
mekanikal akibat perubahan protein juga dinilai. Keputusan menunjukkan bahawa
enzim proteolitik pada kepekatan rendah berupaya menghidrolisis molekul
protein. Walau bagaimanapun, kandungan nitrogen dalam serum LGA meningkat
dengan peningkatan kepekatan enzim. Ini mungkin disebabkan oleh kecenderungan
enzim untuk membentuk jaringan peptida baru yang dikenali juga sebagai aminolisis.
Menariknya, jumlah protein penyebab alahan berkurangan secara berkadar dengan
peningkatan kepekatan enzim. Ini menunjukkan rawatan enzim berkemungkinan
berupaya untuk menyahaktifan aktiviti protein penyebab alahan tersebut.
Keputusan awal ini menunjukkan pendekatan berpotensi untuk menghasilkan produk
LGA dengan risiko alahan yang rendah.
Kata kunci: lateks protein rendah,
enzim proteolitik, alahan protein, sifat mekanikal
References
1.
Kroschwitz, J. (1990). Concise encyclopedia of polymer
science and engineering. Wiley
InterScience of John Wiley & Sons, Inc., Hoboken, pp. 24-64.
2.
Blomfield, G. F. (1951). The rubber hydrocarbon in freshly
tapped Hevea latex. Rubber Chemistry and Technology. 24(4): 737–749.
3.
Blackley, D. C. (1997). Types of latices. Polymer latices: Science and technology Volume
2: Springer Science and Business Media.
4.
Angrove, S. N. (1964). Preservation of NR latex concentrate;
Part I—method of evaluation and evaluation of existing preservative systems. Transactions
of the Institution of the Rubber Industry:
40.
5.
Hasma, H. and Subramaniam, A. (1986). Composition of lipids
in latex of Hevea brasiliensis clone RRIM 501 [Malaysia]. Journal of Natural Rubber Research, 1: 30–40.
6.
Tata, S. J. (1980). Distribution of proteins between the
fractions of Hevea latex separated by ultracentrifugation. Journal of Rubber
Research Institute of Malaysia, 28:
77–85.
7.
Archer, B. L., Barnard, E.G., Cockbain, J.W., Cornforth, R.H.
and Popjak, G. (1966). The stereochemistry of rubber biosynthesis. Proceedings
of the Royal Society B: Biological Sciences, 163: 519–523.
8.
Yeang, H. Y., Arif, S. A. M., Yusof, F. and Sunderasan, E.
(2002). Allergenic proteins of natural rubber latex. Methods, 27: 32–45.
9.
Sussman, G. L., Beezhold, D. H. and Kurup, V. P. (2002).
Allergens and natural rubber proteins. Journal of Allergy and Clinical
Immunology, 110: S33–S39.
10.
Aprem A. B. and Satyendra N. P. (2002). Latex allergy and
recent developments in deproteinisation of natural rubber latex. Journal of
Rubber Research Institute of Malaysia, 5: 94–134
11.
Perrella, F. W. and Gaspari, A. A. (2002). Natural rubber
latex protein reduction with an emphasis on enzyme treatment. Methods, 27: 77–86.
12.
Manroshan, S., Asrul Mustafa, Mok, K. L., Kawahara, S.,
Amir-Hashim M. Y. and Booten, K. (2009). Comparison between sodium dodecyl
sulfate and polyfructose surfactant systems in urea deproteinisation of natural
rubber latex. Journal of Rubber Research Institute of Malaysia, 12: 1–11.
13.
Gazeley, K. F., Gorton, A. D. T. and Pendle, T. D. (1988).
Natural rubber science and technology in ed. by A. D. Roberts (England: Oxford
University Press): 63–98.
14.
Yatim, A. H. M. (1997). Effect of natural latex non-rubbers
on the vulcanisation and physical behaviour of natural rubber latex films. PhD
Dissertation. University of North London, England.
15.
AOAC (2000). Official
methods of analysis. AOAC International.
16.
Priest, F. G., Goodfellow, M., Shute, L. A. and Berkeley, R.
C. W. (1987). Bacillus amyloliquefaciens
sp. nov., nom. rev. International Journal of Systematic Bacteriology, 37: 69–71.
17.
Salwanee, S., Wan Aida, W. M., Mamot, S., Askat, M. Y. M. and
Im, S. I. (2013). Effects of enzyme concentration, temperature, pH and time on
the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus
affinis) by using alcalase. Sains Malaysiana, 42: 279–287.
18.
James, I. T., Philip, B. G. and Sheila, A. B. (2005).
Optimization of conditions for the enzymatic hydrolysis of phytoestrogen
conjugates in urine and plasma. Analytical Biochemistry, 341(2): 220-229
19.
Kim, J. (2002). Protein adsorption on polymer particles. Journal
of Biomedical Materials Research, 21:
4373–4381.
20.
Stoker, H. S. (2015). General, Organic, and Biological
Chemistry. Cengage Learning.
21.
Cowan, D., Daniel, R. and Morgan, H. (1985). Thermophilic
proteases: Properties and potential applications. Trends in Biotechnology, 3: 68–72.
22.
Tangboriboonrat, P., Tiyapiboonchaiya, C. and Lerthititrakul,
C. (1998). New evidence of the surface morphology of deproteinized natural
rubber particles. Polymer Bulletin, 41: 601–608.
23.
Dee, K. C., Puleo, D. A. and Bizios, R. (2003). An introduction to tissue-biomaterial
interactions. John Wiley & Sons.
24.
Yazawa, K. and Numata, K. (2014). Recent advances in
chemoenzymatic peptide syntheses. Molecules, 19: 13755–74.
25.
Baker, P. J., Patwardhan, S. V and Numata, K. (2014). Synthesis
of homopolypeptides by aminolysis mediated by proteases encapsulated in silica
nanospheres. Macromolecular Bioscience, 14: 1619–1626.
26.
Tangpakdee, J. and Tanaka, Y. (1997). Characterization of sol
and gel in hevea natural rubber. Rubber Chemistry and Technology, 70: 707–713.
27.
Sakdapipanich, J. T. (2007). Structural characterization of
natural rubber based on recent evidence from selective enzymatic treatments. Journal
of Bioscience and Bioengineering, 103:
287–292.
28.
Salopek, B., Krasic, D. and Filipovic, S. (1992). Measurement
and application of zeta-potential. Rudarsko-geoloiko-naftni zbornik, 4:
147–151.
29.
Kaszuba, M., Corbett, J., Watson, F. M.and Jones, A. (2010).
High-concentration zeta potential measurements using light-scattering
techniques. Philosophical Transactions of The Royal Society A Mathematical
Physical and Engineering Sciences, 368:
4439–4451.
30.
Prabhu, S. and Murugan, K. (2015). Zeta potential
measurements in colloidal suspensions. International Conference on Systems,
Science, Control, Communication, Engineering and Technology: pp. 221–224.
31.
Honary, S. and Zahir, F. (2013). Effect of zeta potential on
the properties of nano-drug delivery systems -A review (Part 2). Tropical
Journal of Pharmaceutical Research, 12(2):
265–265.
32.
Salgın, S., Salgın, U. and Bahadır, S. (2012). Zeta potentials
and isoelectric points of biomolecules: the effects of ion types and ionic
strengths. International Journal of Electrochemical Science, 7: 12404–12414.
33.
Gençkal, H. (2004). Studies on alkaline protease production
from Bacillus sp. Master
Dissertation. Izmir
Institute of Technology, Turkey.