Malaysian Journal of Analytical Sciences Vol 22 No 2 (2018): 286 - 295

DOI: 10.17576/mjas-2018-2202-14

 

 

 

APPLICATION OF PROTEOLYTIC ENZYME IN HIGH AMMONIATED NATURAL RUBBER LATEX

 

(Aplikasi Enzim Proteolitik dalam Lateks Getah Asli Berammonia Tinggi)

 

Aziana Abu Hassan1*, Norazreen Abd Rahman2, Nurulhuda Abdullah1, Roslinda Sajari3, Mok Kok Lang1

 

1Technology and Engineering Division

2Production Development Division

3Genomics and Bioinformatics Centre

Malaysian Rubber Board, 47000 Sg. Buloh, Selangor, Malaysia

 

*Corresponding author:  aziana@lgm.gov.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

Natural rubber latex (NRL) with ‘low protein content’ is regarded as alternative raw material for less allergenic latex. However, these ‘low protein latexes’ have been reported to give uncertain and at times poorer mechanical properties in which could be due to its method of preparation. Therefore this study was conducted to strengthen the fundamental approach of making ‘low protein latex’ via enzymatic treatment. Proteolytic enzymes were employed to digest the proteins and inactivate some of the proteins function. The aim was to study the effect of enzymatic treatment towards the nitrogen content in NRL that is mainly contributed by the presence of proteins. Impact on the mechanical properties due to changes in the native proteins was also evaluated. Results show that proteolytic enzyme at low concentration effectively hydrolysed the protein molecules. However, nitrogen content in NRL serum was simultaneously increased with increasing enzyme concentration.  This could be due to the tendency of enzyme to form new peptides bonds known also as aminolysis. Interestingly, the amount of allergenic proteins was observed to decrease proportionally with the upsurge of enzyme concentration, suggesting deactivation of allergenicity by the enzyme. These preliminary results indicate a potential approach to produce low allergenic risk NRL products.

 

Keywords:  low protein latex, proteolytic enzyme, protein allergy, mechanical properties

 

Abstrak

Lateks getah asli (LGA) dengan 'kandungan protein rendah' dianggap sebagai bahan mentah alternatif untuk mengurangkan risiko alahan terhadap protein LGA. Walau bagaimanapun, 'lateks protein rendah' menyebabkan sifat mekanikal lateks tersebut terjejas dan bergantung juga kepada kaedah penyediaannya. Oleh itu kajian ini dijalankan untuk mengukuhkan pendekatan asas dalam membuat 'lateks protein rendah' melalui rawatan enzimatik. Enzim proteolitik digunakan untuk mencerna protein dan menyahaktifkan beberapa fungsi protein. Tujuannya adalah untuk mengkaji kesan rawatan enzimatik ke atas kandungan nitrogen dalam LGA yang secara tidak langsung dapat mengesan kehadiran protein. Perubahan secara mekanikal akibat perubahan protein juga dinilai. Keputusan menunjukkan bahawa enzim proteolitik pada kepekatan rendah berupaya menghidrolisis molekul protein. Walau bagaimanapun, kandungan nitrogen dalam serum LGA meningkat dengan peningkatan kepekatan enzim. Ini mungkin disebabkan oleh kecenderungan enzim untuk membentuk jaringan peptida baru yang dikenali juga sebagai aminolisis. Menariknya, jumlah protein penyebab alahan berkurangan secara berkadar dengan peningkatan kepekatan enzim. Ini menunjukkan rawatan enzim berkemungkinan berupaya untuk menyahaktifan aktiviti protein penyebab alahan tersebut. Keputusan awal ini menunjukkan pendekatan berpotensi untuk menghasilkan produk LGA dengan risiko alahan yang rendah.

 

Kata kunci:  lateks protein rendah, enzim proteolitik, alahan protein, sifat mekanikal

 

References

1.       Kroschwitz, J. (1990). Concise encyclopedia of polymer science and engineering. Wiley InterScience of John Wiley & Sons, Inc., Hoboken, pp. 24-64.

2.       Blomfield, G. F. (1951). The rubber hydrocarbon in freshly tapped Hevea latex. Rubber Chemistry and Technology. 24(4): 737–749.

3.       Blackley, D. C. (1997). Types of latices. Polymer latices: Science and technology Volume 2: Springer Science and Business Media.

4.       Angrove, S. N. (1964). Preservation of NR latex concentrate; Part I—method of evaluation and evaluation of existing preservative systems. Transactions of the Institution of the Rubber Industry: 40.

5.       Hasma, H. and Subramaniam, A. (1986). Composition of lipids in latex of Hevea brasiliensis clone RRIM 501 [Malaysia]. Journal of  Natural Rubber Research, 1: 30–40.

6.       Tata, S. J. (1980). Distribution of proteins between the fractions of Hevea latex separated by ultracentrifugation. Journal of Rubber Research Institute of Malaysia, 28: 77–85.

7.       Archer, B. L., Barnard, E.G., Cockbain, J.W., Cornforth, R.H. and Popjak, G. (1966). The stereochemistry of rubber biosynthesis. Proceedings of the Royal Society B: Biological Sciences, 163: 519–523.

8.       Yeang, H. Y., Arif, S. A. M., Yusof, F. and Sunderasan, E. (2002). Allergenic proteins of natural rubber latex. Methods, 27: 32–45.

9.       Sussman, G. L., Beezhold, D. H. and Kurup, V. P. (2002). Allergens and natural rubber proteins. Journal of Allergy and Clinical Immunology, 110: S33–S39.

10.    Aprem A. B. and Satyendra N. P. (2002). Latex allergy and recent developments in deproteinisation of natural rubber latex. Journal of Rubber Research Institute of Malaysia, 5: 94–134

11.    Perrella, F. W. and Gaspari, A. A. (2002). Natural rubber latex protein reduction with an emphasis on enzyme treatment. Methods, 27: 77–86.

12.    Manroshan, S., Asrul Mustafa, Mok, K. L., Kawahara, S., Amir-Hashim M. Y. and Booten, K. (2009). Comparison between sodium dodecyl sulfate and polyfructose surfactant systems in urea deproteinisation of natural rubber latex. Journal of Rubber Research Institute of Malaysia, 12: 1–11.

13.    Gazeley, K. F., Gorton, A. D. T. and Pendle, T. D. (1988). Natural rubber science and technology in ed. by A. D. Roberts (England: Oxford University Press): 63–98.

14.    Yatim, A. H. M. (1997). Effect of natural latex non-rubbers on the vulcanisation and physical behaviour of natural rubber latex films. PhD Dissertation. University of North London, England.

15.    AOAC (2000). Official methods of analysis. AOAC International.

16.    Priest, F. G., Goodfellow, M., Shute, L. A. and Berkeley, R. C. W. (1987). Bacillus amyloliquefaciens sp. nov., nom. rev. International Journal of Systematic Bacteriology, 37: 69–71.

17.    Salwanee, S., Wan Aida, W. M., Mamot, S., Askat, M. Y. M. and Im, S. I. (2013). Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malaysiana, 42: 279–287.

18.    James, I. T., Philip, B. G. and Sheila, A. B. (2005). Optimization of conditions for the enzymatic hydrolysis of phytoestrogen conjugates in urine and plasma. Analytical Biochemistry, 341(2): 220-229

19.    Kim, J. (2002). Protein adsorption on polymer particles. Journal of Biomedical Materials Research, 21: 4373–4381.

20.    Stoker, H. S. (2015). General, Organic, and Biological Chemistry. Cengage Learning.

21.    Cowan, D., Daniel, R. and Morgan, H. (1985). Thermophilic proteases: Properties and potential applications. Trends in Biotechnology, 3: 68–72.

22.    Tangboriboonrat, P., Tiyapiboonchaiya, C. and Lerthititrakul, C. (1998). New evidence of the surface morphology of deproteinized natural rubber particles. Polymer Bulletin, 41: 601–608.

23.    Dee, K. C., Puleo, D. A. and Bizios, R. (2003). An introduction to tissue-biomaterial interactions. John Wiley & Sons.

24.    Yazawa, K. and Numata, K. (2014). Recent advances in chemoenzymatic peptide syntheses. Molecules, 19: 13755–74.

25.    Baker, P. J., Patwardhan, S. V and Numata, K. (2014). Synthesis of homopolypeptides by aminolysis mediated by proteases encapsulated in silica nanospheres. Macromolecular Bioscience, 14: 1619–1626.

26.    Tangpakdee, J. and Tanaka, Y. (1997). Characterization of sol and gel in hevea natural rubber. Rubber Chemistry and Technology, 70: 707–713.

27.    Sakdapipanich, J. T. (2007). Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Journal of Bioscience and Bioengineering, 103: 287–292.

28.    Salopek, B., Krasic, D. and Filipovic, S. (1992). Measurement and application of zeta-potential. Rudarsko-geoloiko-naftni zbornik,  4: 147–151.

29.    Kaszuba, M., Corbett, J., Watson, F. M.and Jones, A. (2010). High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 368: 4439–4451.

30.    Prabhu, S. and Murugan, K. (2015). Zeta potential measurements in colloidal suspensions. International Conference on Systems, Science, Control, Communication, Engineering and Technology: pp. 221–224.

31.    Honary, S. and Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems -A review (Part 2). Tropical Journal of Pharmaceutical Research, 12(2): 265–265.

32.    Salgın, S., Salgın, U. and Bahadır, S. (2012). Zeta potentials and isoelectric points of biomolecules: the effects of ion types and ionic strengths. International Journal of Electrochemical Science, 7: 12404–12414.

33.    Gençkal, H. (2004). Studies on alkaline protease production from Bacillus sp. Master Dissertation. Izmir Institute of Technology, Turkey.

 




Previous                    Content                    Next