Malaysian
Journal of Analytical Sciences Vol 22 No 2 (2018): 270 - 278
DOI:
10.17576/mjas-2018-2202-12
PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE WITH
SILVER DOPED ZnO NANOPARTICLES GROWN ON MICROSCOPIC SAND PARTICLES
(Degradasi Metilena Biru Menggunakan Nanopartikel ZnO
Sebagai Fotomangkin yang Didopkan dengan Perak Tumbuh di atas Pasir Bersaiz
Mikro)
Nur Azmina Mohamed Safian1*,
Roslan Md Nor1, Hartini Ahmad Rafaie2, Siti Fairus Abdul
Sani1, 1
1Department of Physics, Faculty of Sciences,
University
of Malaya, 50603 Kuala Lumpur, Malaysia
2Unit of Physics, School of Science,
Universiti
Teknologi MARA Pahang, Jengka, 26400 Bandar Tun Abdul Razak, Jengka Pahang,
Malaysia
*Corresponding
author: nurazminasafian@siswa.um.edu.my
Received: 4
December 2016; Accepted: 1 December 2017
Abstract
Pure and Ag doped ZnO nanoparticles were synthesized
on microscopic sand particles by sol-gel method. Silver nitrate was used as the
doping precursor, Ag doping levels of 1.3 to 7.7 of Ag/Zn ratios were obtained
based on energy dispersive X-ray spectroscopy analysis. X-ray diffraction
results show that a ZnO (101) peak of Ag doped samples are shifted towards
lower degree which around 0.17o compared
to pure ZnO NPs, indicating the existence of doping in the Ag doped samples.
The pure and Ag doped ZnO samples were used as photocatalysts in the
degradation of methylene blue under UV irradiation. Photodegradation efficiency
based on the pseudo-first kinetics model gave
measured values of the photodegradation rate, k of 8.9, 11.8, 12.7, 14.8 and
17.4 x 10-3 min-1 for pure, 1.3, 1.6, 1.7 and 2.4 of
Ag/Zn ratios, respectively. At higher doping levels of 3.3 and 7.7 of Ag/Zn
ratios, the k values receded to 12.7 and 12.0 x 10-3 min-1,
respectively. The increasing trend on k values can be due to the doping defect
levels which trapped the recombining electrons, thus lengthening the lifetime
of the electron hole pairs.
Keywords: photocatalysis, Ag doped ZnO, nanoparticles
Abstrak
Nanopartikel
ZnO tulen dan nanopartikel ZnO yang didopkan dengan perak (Ag) telah
disintesiskan di atas pasir bersaiz mikro menggunakan kaedah sol-gel. Argentum
nitrat digunakan sebagai sumber Ag, dapatan tahap pendopan adalah 1.3 sehingga
7.7 nisbah Ag kepada Zn (Ag/Zn). Berdasarkan keputusan spektroskopi sinar-X, terdapat peralihan kedudukan puncak ZnO (101)
sebanyak 0.17o jika dibandingkan antara ZnO tulen dan sampel ZnO
yang didopkan dengan Ag. Ini menunjukkan berlaku pendopan di dalam sampel
nanopartikel ZnO yang didopkan dengan Ag. Semua sampel diuji sebagai fotomangkin
di dalam degradasi metilena biru di bawah sinar UV. Kecekapan degradasi dikira
menggunakan model kinetik pseudo-pertama dan memberikan
nilai kadar degradasi, k iaitu masing-masing 8.9, 11.8, 12.7, 14.8 dan
17.4 x 10-3 min-1 untuk sampel ZnO tulen, 1.3, 1.6, 1.7
dan 2.4 untuk nisbah Ag/Zn. Pada tahap pendopan yang tinggi iaitu 3.3 dan 7.7
Ag/Zn, nilai k berkurangan kepada 12.7 dan 12.0 x 10-3 min-1.
Peningkatan nilai k adalah disebabkan oleh kesan pendopan di mana elektron
terperangkap untuk pergabungan semula dan memangjangkan jangka hayat pasangan
elektron dan lubang.
Kata kunci: fotomangkin, perak didopkan ZnO, nanopartikel
References
1.
Tanaka, K. and Blyholder, G.
(1972). Photocatalytic reactions on zinc oxide. III. Hydrogenation of ethylene.
The Journal of Physical Chemistry, 76(10):
1394-1397.
2.
Yan,
Y., Al-Jassim, M. M. and Wei, S. H. (2006). Doping of ZnO by Group-IB elements.
Applied physics letters, 89(18):
181912.
3.
Ren,
C., Yang, B., Wu, M., Xu, J., Fu, Z., Guo, T., Zhao, Y. and Zhu, C. (2010).
Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. Journal
of Hazardous materials, 182(1):
123-129.
4.
Hosseini,
S. M., Sarsari, I. A., Kameli, P. and Salamati, H. (2015). Effect of Ag doping
on structural, optical, and photocatalytic properties of ZnO nanoparticles. Journal
of Alloys and Compounds, 640:
408-415.
5.
Karunakaran,
C., Rajeswari, V. and Gomathisankar, P. (2011). Combustion synthesis of ZnO and
Ag-doped ZnO and their bactericidal and photocatalytic activities. Superlattices
and Microstructures, 50(3):
234-241.
6.
Amornpitoksuk,
P., Suwanboon, S., Sangkanu, S., Sukhoom, A., Muensit, N. and Baltrusaitis, J.
(2012). Synthesis, characterization, photocatalytic and antibacterial
activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder
Technology, 219: 158-164.
7.
Tamargo,
M. C. (2002). II-VI semiconductor
materials and their applications (Vol. 12). CRC Press.
8.
Sun,
W. C., Yeh, Y. C., Ko, C. T., He, J. H. and Chen, M. J. (2011). Improved
characteristics of near-band-edge and deep-level emissions from ZnO nanorod
arrays by atomic-layer-deposited Al2O3 and ZnO shell
layers. Nanoscale Research Letters, 6(1): 556.
9.
Vanheusden,
K., Warren, W. L., Seager, C. H., Tallant, D. R., Voigt, J. A. and Gnade, B. E.
(1996). Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal
of Applied Physics, 79 (10):
7983-7990.
10.
Wu,
J. J. and Liu, S. C. (2002). Low-temperature growth of well-aligned ZnO
nanorods by chemical vapor deposition. Advanced Materials, 14(3): 215-218.
11.
Liu,
M., Kitai, A. H. and Mascher, P. (1992). Point defects and luminescence centres
in zinc oxide and zinc oxide doped with manganese. Journal of Luminescence,
54(1): 35-42.
12.
Wu,
X. L., Siu, G. G., Fu, C. L. and Ong, H. C. (2001). Photoluminescence and
cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Applied
Physics Letters, 78(16):
2285-2287.
13.
Djurišić, A. B., Leung, Y. H., Tam, K. H., Hsu, Y. F., Ding, L., Ge, W.
K., Zhong,
Y. C., Wong, K. S., Chan, W. K., Tam, H. L. and Cheah, K. W. (2007). Defect emissions in
ZnO nanostructures. Nanotechnology, 18(9): 095702.
14.
Kong,
M., Li, Y., Chen, X., Tian, T., Fang, P., Zheng, F. and Zhao, X. (2011). Tuning
the relative concentration ratio of bulk defects to surface defects in TiO2
nanocrystals leads to high photocatalytic efficiency. Journal of the
American Chemical Society, 133(41):
16414-16417.