Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 157 - 165

DOI: 10.17576/mjas-2018-2201-20

 

 

 

TRANSESTERIFICATION OF WASTE COOKING OIL IN BIODIESEL PRODUCTION UTILIZING CaO/Al2O3 HETEROGENEOUS CATALYST

 

(Transesterifikasi Sisa Minyak Masak dalam Pengeluaran Biodiesel Menggunakan CaO/Al2O3 Mangkin Heterogenus)

 

Norshahidatul Akmar Mohd Shohaimi* and Fatin Nur Syahirah Marodzi

 

Faculty of Applied Sciences,

Universiti Teknologi MARA Pahang, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia

 

*Corresponding author:  akmarshohaimi@pahang.uitm.edu.my

 

 

Received: 4 December 2016; Accepted: 1 December 2017

 

 

Abstract

The increasing demand for fossil fuel brings a great concern as it is natural and non-renewable sources. There are several studies on biodiesel using renewable sources such as waste cooking oil. The process of transforming waste cooking oil into biodiesel is called transesterification reaction which involved one step (esterification) and two step (esterification-transesterification) reaction. The performance of the CaO/Al2O3 catalyst was investigated. The parameters studied were reaction time and catalyst loading. In this study, it was found that the highest yield was obtained from the two step transesterification reaction, 30.91% with optimum condition of 3 wt.% of Ca/Al2O3 catalyst, 12:1 methanol to oil ratio, reaction temperature of 65 ºC for 3 hours. Esterification reaction reduce the FFA content in the feedstock, because, in order to achieve high biodiesel yield, the acid value of feed stock should below than 1 mg KOH/g oil. GC-MS results showed that six methyl ester species was found in the product and this finding reveals that the free fatty acid had successfully converted to methyl ester by using two step esterification-tranesterification reaction.

 

Keywords:  biodiesel, heterogeneous catalyst, transesterification, waste cooking oil

 

Abstrak

Permintaan yang semakin meningkat bagi bahan api fosil membawa kebimbangan besar kerana ia adalah sumber semula jadi dan tidak boleh diperbaharui. Terdapat beberapa kajian mengenai biodiesel menggunakan sumber yang boleh diperbaharui seperti sisa minyak masak. Proses mengubah sisa minyak masak kepada biodiesel dipanggil reaksi transesterifikasi yang melibatkan reaksi satu langkah (pengesteran) dan dua langkah (pengesteran- transesterifikasi). Prestasi pemangkin CaO/Al2O3 dikaji. Parameter yang dikaji ialah masa tindak balas dan jumlah pemangkin. Dalam kajian ini, didapati bahawa hasil tertinggi diperoleh daripada tindak balas transesterifikasi dua langkah, 30.91% dengan keadaan optimum daripada 3% berat pemangkin Ca/Al2O3, 12:1 metanol kepada nisbah minyak, suhu tindak balas 65 ºC selama 3 jam. Tindak balas pengesteran mengurangkan kandungan FFA dalam bahan mentah, kerana untuk mencapai hasil biodiesel tinggi, nilai asid stok suapan sepatutnya kurang dari 1 mg KOH/g minyak. Keputusan GC-MS menunjukkan bahawa enam spesis metil ester ditemui dalam produk dan penemuan ini mendedahkan bahawa asid lemak bebas telah berjaya ditukar kepada metil ester dengan menggunakan dua langkah tindak balas pengesteran- transesterifikasi.

 

Kata kunci:  biodiesel, mangkin heterogenus, transesterifikasi, sisa minyak masak

 

References

1.       Lan, J. C-W., Tsui, A., Wang, S. S. and Wu, H-S. (2009). A review of biodiesel as renewable energy. In Biochemical Engineering. Dumont, F. E. and Sacco. J. A. (eds.). Nova Science Publisher, Inc., New York: pp. 1-40.

2.       Srinivasan, S. P., Malliga, P. and Murugan, S. (2008). Supply chain network of jatropha oil for biodiesel. In Bio-Fuels: Marketing stratergies and impact on rural development. Mehla., S.K. (eds.). Aavishkar Publiser, Distributors., India: pp. 29-40.

3.       Sastry, G. R. (2008). Biodiesel: biodegradable alternative fuel for diesel engine. New Delhi: Readworthy Publications (P) Ltd, India.

4.       Wen, Z., Yu, X., Tu, S-T., Yan, J. and Dahlquist, E. (2010). Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresource Technology, 101(24): 9570-9576.

5.       Lam,  M. K.,  and  Lee,  K. T.  (2011).  Production  of  biodiesel  using  palm  oil.  In Biofuels: Alternative feedstocks and conversion process. Elsevier Inc, USA: pp. 353-374.

6.       Agarwal, M., Chauhan, G., Chaurasia, S. and Singh, K. (2012). Study of catalytic behaviour of KOH as homogeneous and heterogeneous alkali catalyst for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 43(1): 89-94.

7.       Shohaimi, N. A. M., Bakar, W. A. W. A. and Jaafar, J. (2014). Catalytic neutralization of acidic crude oil utilizing ammonia in ethylene glycol basic solution. Journal of Industrial and Engineering Chemistry, 20(4): 2086–2094.

8.       Farooq, M., Ramli, A. and Naeem, A. (2015). Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy, 76: 362-368.

9.       Mahesh, S. E., Ramanathan, A., Begum, K. M. M. S. and Narayanan, A. (2015). Biodiesel production from waste cooking oil using KBr impregnated CaO as catalyst. Energy Conversion and Management, 91: 442–450.

10.    Chongkhong, S. Ã., Tongurai, C., Chetpattananondh, P. and Bunyakan, C. (2007). Biodiesel production by esterification of palm fatty acid distillate. Biomass and Bioenergy, 31: 563-568.

11.    Liu, X., He, H., Wang, Y., Zhu, S. and Piao, X. (2008). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87: 216-221.

12.    Sirisomboonchai, S., Abuduwayiti, M., Guan, G., Samart, C., Abliz, S., Hao, X. and Abudula, A. (2015). Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Conversion and Management, 95: 242–247.

13.    Muciño, G. G., Romero, R., Ramírez, A., Luz Martínez, S., Baeza-Jiménez, R. and Natividad, R. (2014). Biodiesel production from used cooking oil and sea sand as heterogeneous catalyst. Fuel, 138: 143-148.

14.    Leung, D. Y. C., Wu, X. and Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4): 1083-1095.

15.    Lee, S. L., Wong, Y. C., Tan, Y. P. and Yew, S. Y. (2015). Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Conversion and Management, 93: 282–288.

16.    Ramadhas, A. S., Jayaraj, S and Muraleedharan, C. (2004). Biodiesel production from high FFA rubber seed oil. Fuel, 84: 335-340.

17.    Ullah, Z., Bustam, M. A. and Man, Z. (2015). Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renewable Energy, 77: 521-526.

18.    Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2015). Introduction to Spectroscopy (5th  edition). Cengage Learning, Washington.

19.    Rabelo, S. N., Ferraz, V. P., Oliveira, L. S. and Franca, A. S. (2015). FTIR analysis for quantification of fatty acid methyl esters in biodiesel produced by microwave-assisted transesterification. International Journal of Environmental Science and Development, 6(12): 964-969.

 




Previous                    Content                    Next