Malaysian
Journal of Analytical Sciences Vol 22 No 1 (2018): 8 - 16
DOI:
https://doi.org/10.17576/mjas-2018-2201-02
CATALYTIC
CRACKING OF USED VEGETABLE OIL TO GREEN FUEL WITH METAL FUNCTIONALIZED ZSM-5
CATALYSTS
(Pemecahan
Bermangkin Minyak Sayur Terpakai kepada Bahan Api Hijau dengan
Pemangkin ZSM-5 Berfungsi Logam)
Mohamed Azeem
Abdul Majed and Ching Thian Tye*
School
of Chemical Engineering, Engineering Campus
Universiti
Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
*Corresponding author: chcttye@usm.my
Received: 6
September 2017; Accepted: 8 January 2018
Abstract
Depletion of fossil fuel reserves and
environmental issue have led to the development of biofuels. Plant derived oil,
such as palm oil, has been claimed as one of the promising source of renewable
energy. However, high oxygen content in palm oil makes it unsuitable to be
directly used as fuel. In the present study, the performance of Ni/ZSM-5,
Mo/ZSM-5 and NiMo/ZSM-5 catalysts was investigated in catalytic cracking of
used vegetable oil (UVO) into green fuel. The catalytic cracking reactions were
carried out in a fixed bed reactor at 4 hour-1(WHSV), continuously
for 3 hours. Conversions of the two major fatty acids: palmitic acid (84.72%)
and stearic acid (74.10%) were found highest at 350 °C with Mo/ZSM-5. The
optimum palmitic acid and stearic acid conversion with Mo/ZSM-5 were found at
400 °C. Comparison study was also done with Pd/Al2O3 at
400 °C for its performance in catalytic cracking of UVO. Similar conversion for
palmitic acid was obtained for Mo/ZSM-5 (84.72%) and Pd/Al2O3
(86.37%) at steady state. However, system with Mo/ZSM-5 as catalyst approached
steady state earlier at 60 mins compared to that of Pd/Al2O3
at 120 minutes.
Keywords: catalytic cracking, used vegetable oil, green
fuel, ZSM-5
Abstrak
Penurunan rizab
bahan api fosil dan isu alam sekitar telah membawa kepada pembangunan bahan api
bio. Minyak daripada tumbuhan, seperti minyak kelapa sawit telah
dituntut sebagai salah satu sumber tenaga boleh diperbaharui yang menjanjikan. Namun, kandungan oksigen yang tinggi dalam minyak kelapa sawit
menjadikannya tidak sesuai digunakan secara terus sebagai bahan bakar. Dalam kajian ini, prestasi pemangkin Ni/ZSM-5, Mo/ZSM-5 dan NiMo/ZSM-5
telah diuji dalam pemecahan bermangkin minyak sayuran terpakai (UVO) kepada
bahan api hijau. Tindak balas pemecahan bermangkin tersebut adalah dijalankan
dalam reaktor lapisan tetap pada 4 jam-1 (WHSV), secara berterusan
selama 3 jam. Penukaran kedua-dua asid lemak utama: asid palmitik (84.72%) dan
asid stearik (74.10%) didapati paling tinggi pada 350 °C dengan Mo/ZSM-5. Penukaran
optimum asid palmitik dan asid stearik dengan Mo/ZSM-5 didapati pada 400 °C. Kajian perbandingan juga dilakukan dengan Pd/Al2O3
pada suhu 400 °C untuk prestasinya dalam pemecahan bermangkin UVO. Penukaran
yang sama telah diperolehi untuk asid palmitik dengan Mo/ZSM-5 (84.72%) dan
Pd/Al2O3 (86.37%) pada keadaan mantap. Namun begitu,
sistem yang menggunakan Mo/ZSM-5 sebagai pemangkin mencecah keadaan mantap
lebih awal pada 60 minit berbanding dengan Pd/Al2O3 pada
120 minit.
Kata kunci: pemecahan bermangkin, minyak sayuran terpakai, bahan api
hijau, ZSM-5
References
1.
Dos
Anjos, J. S., De Araujo, G. W, Lam, Y. L. and Frety, R. (1983). Catalytic
decomposition of vegetable oil. Applied Catalysis, 5(3): 299-308.
2.
Kaplan,
S. (2017). Section 10 renewable energy. In: Monthly energy review July 2017,
U.S. Energy Information Administration, Office of Energy Statistics, U.S.
Department of Energy, Publication number DOE/EIA-0035(2017/7), Washington, DC:
pp 156.
3.
Fox, J. (2016). World biodiesel production/consumption to rise 14%
by 2020: OECD/FAO. S&P
Global Platts. https://www.platts.com/latest-news/agriculture/london/world-biodiesel-productionconsumption-to-rise 26485632. [Access
online 1 August 2017].
4.
Abbasov,
V., Mammadova, T., Aliyeva, N., Abbasov, M., Movsumov, N., Joshi A., Lvov Y. and
Abdullayev, E. (2016). Catalytic cracking of vegetable oils and vacuum gasoil
with commercial high alumina zeolite and halloysite nanotubes for biofuel
production. Fuel, 181: 55–63.
5.
Natural
Fuel (2017). What is the difference between biodiesel and green diesel? http://naturalfuel.
com.au/difference-biodiesel-green-diesel/[Acessonline 28 December 2017].
6.
Rigutto,
M. S., Van Veen, R. and Huve, L. (2007). Chapter 24: Zeolites in hydrocarbon
processing. Studies in Surface Science and Catalysis, 168: 855-913.
7.
Corma,
A. and Martínez, A. (2005). Zeolites in refining and petrochemistry. Studies
in Surface Science and Catalysis,
157: 337-366.
8.
Di
Renzo, F. and Fajula, F. (2005). Introduction to molecular sieves: trends of
evolution of the zeolite community. Studies in Surface Science and Catalysis, 157: 1-12.
9.
Adjaye,
J. D., Katikaneni, S. P. and Bakhshi, N. N. (1996). Catalytic conversion of a
biofuel to hydrocarbons: Effect of mixtures of HZSM-5 and silica-alumina
catalysts on product distribution. Fuel Processing Technology, 48(2): 115-143.
10.
Twaiq,
F.A., Zabidi, N.A. and Bhatia, S. (1999). Catalytic conversion of palm oil to
hydrocarbons: Performance of various zeolite catalysts. Industrial and Engineering
Chemistry Research, 38(9): 3230-3237.
11.
Li,
H., Shen, B., Kabalu, J. C. and Nchare, M. (2009). Enhancing the production of
biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking. Renew Energy, 34(4):1033–1039.
12.
Doronin,
V. P., Potapenko, O. V., Lipin, P. V. and Sorokina, T. P. (2013). Catalytic
cracking of vegetable oils and vacuum gas oil. Fuel, 106: 757–765.
13.
Twaiq,
F. A., Mohamed, A. R. and Bhatia, S. (2003). Liquid hydrocarbon fuels from palm
oil by catalytic cracking over aluminosilicate mesoporous catalysts with
various Si/Al ratios. Microporous and Mesoporous Materials, 64(1-3): 95-107.
14.
Snåre,
M., Kubičková, I., Mäki-Arvela, P., Eränen, K. and Murzin, D. Y. (2006).
Heterogeneous catalytic deoxygenation of stearic acid for production of
biodiesel. Industrial and Engineering Chemistry Research, 45(16): 5708-5715.
15.
Lestari,
S., Maki-Arvela, P., Bernas, H.,
16.
Mäki-Arvela,
P., Kubickova, I., Snåre, M., Eränen, K. and Murzin, D.Y. (2007). Catalytic
deoxygenation of fatty acids and their derivatives. Energy & Fuels,
21(1): 30-41.
17.
Kubičková,
I., Snåre, M., Eränen, K., Mäki-Arvela, P. and Murzin, D. Y. (2005). Hydrocarbons
for diesel fuel via decarboxylation of vegetable oils. Catalysis Today, 106(1-4): 197-200.
18.
Hunns, J. A., Arroyo,
M., Lee,
A. F., Escola, J. M., Serrano, D. and Wilson, K. (2016). Hierarchical mesoporous Pd/ZSM-5 for the
selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane. Catalysis Science and Technology, 6:
2560-2564.
19.
Raut,
R., Banakar, V. V. and Darbha, S. (2016). Catalytic decarboxylation of
non-edible oils over three-dimensional mesoporous silica supported Pd. Journal of Molecular Catalysis A: Chemical,
417: 126-134.
20.
Oi,
L. E., Choo, M-Y., Suraya, Z., Lee, H.V. and Juan, J. C. (2017). Mesoporous TiO2: Potential
catalyst for deoxygenation of triglyceride to hydrocarbon-like biofuel. Malaysian Journal of Catalysis, 2(2):
53-56.
21.
Kordulis,
C., Bourikas, K., Gousi, M., Kordouli, E. and Lycourghiotis, A. (2016). Development of nickel based catalysts for the
transformation of natural triglycerides and related compounds into green
diesel: a critical review. Applied
Catalysis B.,
181: 156-196.
22.
Cejka,
J. (2005). Zeolites and ordered
mesoporous materials: progress and prospects: the 1st FEZA School on
Zeolites, August 20-21, 2005, Gulf Professional Publishing, Prague, Czech Republic.
23.
anilina, Castelanelli van Bokhoven,Where
are the active sites in zeolites? origin of aluminum zoning in ZSM-5. Journal of Physical
Chemistry C, 114 (14): 6640–6645.
24.
Chhetri, A. B., Watts, K. C. and Islam M. R. (2008).
Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1(1):
3-18.
25.
Canakci, M., Van Gerpen, J. (2001). Biodiesel
production from oils and fats with high free fatty acids. Transactions-American Society of Agricultural Engineers,
44(6):1429-1436.
26.
Chiam, L. T. and Tye, C. T. (2013). Deoxygenation of
plant fatty acid using NiSnK/SiO2 as catalyst. Malaysian
Journal of Analytical Sciences, 17(1): 129 – 138.