Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 8 - 16

DOI: https://doi.org/10.17576/mjas-2018-2201-02

 

 

 

CATALYTIC CRACKING OF USED VEGETABLE OIL TO GREEN FUEL WITH METAL FUNCTIONALIZED ZSM-5 CATALYSTS

 

(Pemecahan Bermangkin Minyak Sayur Terpakai kepada Bahan Api Hijau dengan Pemangkin ZSM-5 Berfungsi Logam)

 

Mohamed Azeem Abdul Majed and Ching Thian Tye*

 

School of Chemical Engineering, Engineering Campus

Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

 

*Corresponding author:  chcttye@usm.my

 

 

Received: 6 September 2017; Accepted: 8 January 2018

 

 

Abstract

Depletion of fossil fuel reserves and environmental issue have led to the development of biofuels. Plant derived oil, such as palm oil, has been claimed as one of the promising source of renewable energy. However, high oxygen content in palm oil makes it unsuitable to be directly used as fuel. In the present study, the performance of Ni/ZSM-5, Mo/ZSM-5 and NiMo/ZSM-5 catalysts was investigated in catalytic cracking of used vegetable oil (UVO) into green fuel. The catalytic cracking reactions were carried out in a fixed bed reactor at 4 hour-1(WHSV), continuously for 3 hours. Conversions of the two major fatty acids: palmitic acid (84.72%) and stearic acid (74.10%) were found highest at 350 °C with Mo/ZSM-5. The optimum palmitic acid and stearic acid conversion with Mo/ZSM-5 were found at 400 °C. Comparison study was also done with Pd/Al2O3 at 400 °C for its performance in catalytic cracking of UVO. Similar conversion for palmitic acid was obtained for Mo/ZSM-5 (84.72%) and Pd/Al2O3 (86.37%) at steady state. However, system with Mo/ZSM-5 as catalyst approached steady state earlier at 60 mins compared to that of Pd/Al2O3 at 120 minutes.

 

Keywords:  catalytic cracking, used vegetable oil, green fuel, ZSM-5  

 

Abstrak

Penurunan rizab bahan api fosil dan isu alam sekitar telah membawa kepada pembangunan bahan api bio. Minyak daripada tumbuhan, seperti minyak kelapa sawit telah dituntut sebagai salah satu sumber tenaga boleh diperbaharui yang menjanjikan. Namun, kandungan oksigen yang tinggi dalam minyak kelapa sawit menjadikannya tidak sesuai digunakan secara terus sebagai bahan bakar. Dalam kajian ini, prestasi pemangkin Ni/ZSM-5, Mo/ZSM-5 dan NiMo/ZSM-5 telah diuji dalam pemecahan bermangkin minyak sayuran terpakai (UVO) kepada bahan api hijau. Tindak balas pemecahan bermangkin tersebut adalah dijalankan dalam reaktor lapisan tetap pada 4 jam-1 (WHSV), secara berterusan selama 3 jam. Penukaran kedua-dua asid lemak utama: asid palmitik (84.72%) dan asid stearik (74.10%) didapati paling tinggi pada 350 °C dengan Mo/ZSM-5. Penukaran optimum asid palmitik dan asid stearik dengan Mo/ZSM-5 didapati pada 400 °C. Kajian perbandingan juga dilakukan dengan Pd/Al2O3 pada suhu 400 °C untuk prestasinya dalam pemecahan bermangkin UVO. Penukaran yang sama telah diperolehi untuk asid palmitik dengan Mo/ZSM-5 (84.72%) dan Pd/Al2O3 (86.37%) pada keadaan mantap. Namun begitu, sistem yang menggunakan Mo/ZSM-5 sebagai pemangkin mencecah keadaan mantap lebih awal pada 60 minit berbanding dengan Pd/Al2O3 pada 120 minit.

 

Kata kunci:  pemecahan bermangkin, minyak sayuran terpakai, bahan api hijau, ZSM-5

 

References

1.       Dos Anjos, J. S., De Araujo, G. W, Lam, Y. L. and Frety, R. (1983). Catalytic decomposition of vegetable oil. Applied Catalysis, 5(3): 299-308.

2.       Kaplan, S. (2017). Section 10 renewable energy. In: Monthly energy review July 2017, U.S. Energy Information Administration, Office of Energy Statistics, U.S. Department of Energy, Publication number DOE/EIA-0035(2017/7), Washington, DC: pp 156.

3.       Fox, J. (2016).  World  biodiesel production/consumption to rise 14% by 2020: OECD/FAO. S&P Global Platts. https://www.platts.com/latest-news/agriculture/london/world-biodiesel-productionconsumption-to-rise 26485632. [Access online 1 August 2017].

4.       Abbasov, V., Mammadova, T., Aliyeva, N., Abbasov, M., Movsumov, N., Joshi A., Lvov Y. and Abdullayev, E. (2016). Catalytic cracking of vegetable oils and vacuum gasoil with commercial high alumina zeolite and halloysite nanotubes for biofuel production. Fuel, 181: 55–63.

5.       Natural Fuel (2017). What is the difference between biodiesel and green diesel? http://naturalfuel. com.au/difference-biodiesel-green-diesel/[Acessonline 28 December 2017].

6.       Rigutto, M. S., Van Veen, R. and Huve, L. (2007). Chapter 24: Zeolites in hydrocarbon processing. Studies in Surface Science and Catalysis, 168: 855-913.

7.       Corma, A. and Martínez, A. (2005). Zeolites in refining and petrochemistry. Studies in Surface Science and Catalysis, 157: 337-366.

8.       Di Renzo, F. and Fajula, F. (2005). Introduction to molecular sieves: trends of evolution of the zeolite community. Studies in Surface Science and Catalysis, 157: 1-12.

9.       Adjaye, J. D., Katikaneni, S. P. and Bakhshi, N. N. (1996). Catalytic conversion of a biofuel to hydrocarbons: Effect of mixtures of HZSM-5 and silica-alumina catalysts on product distribution. Fuel Processing Technology, 48(2): 115-143.

10.    Twaiq, F.A., Zabidi, N.A. and Bhatia, S. (1999). Catalytic conversion of palm oil to hydrocarbons: Performance of various zeolite catalysts. Industrial and Engineering Chemistry Research, 38(9): 3230-3237.

11.    Li, H., Shen, B., Kabalu, J. C. and Nchare, M. (2009). Enhancing the production of biofuels from cottonseed oil by fixed-fluidized bed catalytic cracking. Renew Energy, 34(4):1033–1039.

12.    Doronin, V. P., Potapenko, O. V., Lipin, P. V. and Sorokina, T. P. (2013). Catalytic cracking of vegetable oils and vacuum gas oil. Fuel, 106: 757–765.

13.    Twaiq, F. A., Mohamed, A. R. and Bhatia, S. (2003). Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous and Mesoporous Materials, 64(1-3): 95-107.

14.    Snåre, M., Kubičková, I., Mäki-Arvela, P., Eränen, K. and Murzin, D. Y. (2006). Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Industrial and Engineering Chemistry Research, 45(16): 5708-5715.

15.    Lestari, S., Maki-Arvela, P., Bernas, H., Simakova, O., Sjöholm, R., Beltramini, J., Max Lu, G. Q., Myllyoja, J., Simakova, I. and Murzin D.Y. (2009). Catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energy & Fuels, 23(8): 3842-3845.

16.    Mäki-Arvela, P., Kubickova, I., Snåre, M., Eränen, K. and Murzin, D.Y. (2007). Catalytic deoxygenation of fatty acids and their derivatives. Energy & Fuels, 21(1): 30-41.

17.    Kubičková, I., Snåre, M., Eränen, K., Mäki-Arvela, P. and Murzin, D. Y. (2005). Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catalysis Today, 106(1-4): 197-200.

18.    Hunns, J. A.Arroyo, M.Lee, A. F.Escola, J. M.Serrano, D. and Wilson, K. (2016). Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane. Catalysis Science and Technology, 6: 2560-2564.

19.    Raut, R., Banakar, V. V. and Darbha, S. (2016). Catalytic decarboxylation of non-edible oils over three-dimensional mesoporous silica supported Pd. Journal of Molecular Catalysis A: Chemical, 417: 126-134.

20.    Oi, L. E., Choo, M-Y., Suraya, Z., Lee, H.V. and Juan, J. C. (2017). Mesoporous TiO2: Potential catalyst for deoxygenation of triglyceride to hydrocarbon-like biofuel. Malaysian Journal of Catalysis, 2(2): 53-56.

21.    Kordulis, C., Bourikas, K., Gousi, M., Kordouli, E. and Lycourghiotis, A. (2016). Development of nickel based catalysts for the transformation of natural triglycerides and related compounds into green diesel: a critical review. Applied Catalysis B., 181: 156-196.

22.    Cejka, J. (2005). Zeolites and ordered mesoporous materials: progress and prospects: the 1st FEZA School on Zeolites, August 20-21, 2005, Gulf Professional Publishing, Prague, Czech Republic.

23.    Danilina, N., Krumeich, F., Castelanelli, S. A. and van Bokhoven, J. A. (2010). Where are the active sites in zeolites? origin of aluminum zoning in ZSM-5. Journal of Physical Chemistry C114 (14): 6640–6645.

24.    Chhetri, A. B., Watts, K. C. and Islam M. R. (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1(1): 3-18.

25.    Canakci, M., Van Gerpen, J. (2001). Biodiesel production from oils and fats with high free fatty acids. Transactions-American Society of Agricultural Engineers, 44(6):1429-1436.

26.    Chiam, L. T. and Tye, C. T. (2013). Deoxygenation of plant fatty acid using NiSnK/SiO2 as catalyst.  Malaysian Journal of Analytical Sciences, 17(1): 129 – 138.

 




Previous                    Content                    Next