Malaysian
Journal of Analytical Sciences Vol 22 No 1 (2018): 17 - 26
DOI:
https://doi.org/10.17576/mjas-2018-2201-03
SYNTHESIS
AND CHARACTERIZATION OF MESOPOROUS POLYMER-SILICA HYBRID MONOLITH USING
CONVENTIONAL SOL-GEL METHOD FOR ENZYME SUPPORT
(Sintesis dan Pencirian Monolit Hibrid Polimer-Silika
Berliang-Meso Menggunakan Kaedah Konvensional Sol-Gel Untuk Bertindak Sebagai
Sokongan Enzim)
Noor Hidayah
Idrohani1, Samuel M. Mugo2, Sabiqah Tuan Anuar1*
1School of Marine and Environmental Sciences,
Universiti
Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
2Department of Physical Sciences,
Mac
Ewan University, Edmonton, Alberta, T5J 4S2, Canada
*Corresponding author: sabiqahanuar@umt.edu.my
Received:
26 August 2017; Accepted: 2 January 2018
Abstract
This research involved developing a
novel solid support for an enzyme attachment, focusing on synthesizing a
polymer-silica hybrid monolith via in-situ
sol-gel polymerization method. The fabrication of a very large surface area of
the monolith was done using a cold mixture of poly(ethylene-glycol) (PEG) with
tetraethyl-orthosilicate (TEOS) and acetic acid with different ratios of PEG
amount and molecular weights, namely PEG-0.1, PEG-0.2, and PEG-0.3. The
experiments were conducted at a very low temperature of 0 °C, followed by
overnight gelification and aging. The sol then underwent calcination at 200 °C
forming a hybrid monolith. The characterizations of hybrid monoliths were
performed by Attenuated-Total Reflection–Fourier Transformed Infrared
Spectroscopy (ATR-FTIR), Scanning Electron Microscope (SEM), and Surface Area
and Porosity Analyzer using both Brunauer-Emmett-Teller (BET) and
Barrett-Joyner-Halenda (BJH) methods to describe the developed monoliths. FTIR
shows the presence of Si-O-Si stretching associated with the monolith network
due to the polymerization process together with the presence of silanol
functional group (Si-OH) that can be exploited further for covalent attachment
with the enzyme. Results also showed that the optimum ratios for the hybrid
polymer-silica synthesis were PEG-0.1with 10,000 Mn surface area of
mesoporous network recorded for 494.121 m2/g and pore volume of
0.265 cm3/g. These findings showed that the synthesized hybrid
monolith on fused silica capillary will provide a vast surface area with
desirable functional groups; thus, very promising for lipase immobilization
support that can be used in future small-scale lipid transformation.
Keywords: hybrid monolith, fused silica capillary,
sol-gel polymerization, enzyme support, mesoporous monolith
Abstrak
Penyelidikan
ini melibatkan penghasilan satu sokongan baru untuk tautan enzim yang mana
berfokuskan kepada sintesis monolit hibrid polimer-silika melalui kaedah
pempolimeran sol-gel secara in-situ. Pemfabrikatan monolit yang
mempunyai luas permukaan yang sangat besar telah dilakukan menggunakan campuran
sejuk daripada poli(etilina-glikol)(PEG) dengan tetraetil-ortosilikat (TEOS)
dan asid asetik pada nisbah bagi jumlah
dan berat molekular PEG yang berbeza, dan dinamakan PEG-0.1, PEG-0.2 dan
PEG-0.3. Eksperimen telah dijalankan dalam suhu yang sangat rendah pada 0°C
diikuti dengan pengegelan dan penuaan untuk semalaman. Sol tersebut kemudiannya
melalui proses kalsinasi pada suhu 200 °C lalu membentuk hibrid monolit. Hibrid
monolit yang dihasilkan telah dicirikan melalui inframerah transformasi Fourier
(FTIR), mikroskop pengimbas elektron (SEM) dan penganalisa rongga dan luas
permukaan menggunakan kaedah Brunauer-Emmett-Teller (BET) dan
Barrett-Joyner-Halenda (BJH) untuk menggambarkan monolit yang telah terbentuk.
Keputusan dari FTIR menunjukkan kehadiran regangan Si-O-Si daripada jaringan
monolit disebabkan proses pempolimeran, bersama-sama dengan kehadiran kumpulan
berfungsi silanol (Si-OH) yang boleh dieksplotasi untuk digunakan di dalam
tautan kovalen dengan enzim. Didapati
bahawa nisbah optima bagi sintesis polimer-silika hibrid adalah PEG-0.1 dengan
berat molekul 10,000 Mn, yang mempunyai luas permukaan bagi jaringan
liang-meso sebanyak 494.121 m2/g dan isipadu liang 0.265 cm3/g.
Keputusan tersebut menunjukkan hibrid monolit yang disintesis di dalam kapilari
silika kosong boleh menghasilkan luas permukaan yang sangat besar, dan
berpotensi sebagai sokongan untuk pemegunan lipase bagi transformasi lipid
berskala kecil di masa hadapan.
Kata kunci: campuran
monolit, kapilari silika kosong, pempolimeran sol-gel, sokongan enzim, monolit
berliang-meso
References
1.
Vázquez,
M. and Paull, B. (2010). Review on recent and advanced applications of
monoliths and related porous polymer gels in micro-fluidic devices. Analytica
Chimica Acta, 668(2): 100 –
113.
2.
Nema,
T., Chan, E. C. Y. and Ho, P. C. (2014). Applications of monolithic materials for sample preparation. Journal
of Pharmaceutical and Biomedical Analysis, 87: 130 – 141.
3.
Bakry,
R., Huck, C. W. and Bonn, G. K. (2009). Recent
applications of organic
monoliths in capillary liquid chromatographic separation of biomolecules. Journal
of Chromatographic Science, 47(6):
418 – 431.
4.
Gaweł, B., Gaweł, K. and Øye, G. (2010). Sol-gel synthesis of
non-silica monolithic materials. Materials,
3(4): 2815 – 2833.
5.
Nic, M., Jirat, J., and Kosata, B. (2012). IUPAC gold book.
http://goldbook.iupac.org/MT07559.html. [Access online 02 April 2016].
6.
Svec, F. (2002). Advances in biochemical
engineering/biotechnology: Modern advances in chromatography. Springer-Verlag
Berlin Heidelberg, New York. 76: pp. 1 – 47.
7.
Rieux,
L., Niederländer, H., Verpoorte, E. and Bischoff,
R. (2005). Silica monolithic columns: Synthesis, characterisation and applications
to the analysis of biological molecules. Journal of Separation Science, 28(14): 1628 – 1641.
8.
Nordborg, A. and Hilder, E. F. (2009). Recent advances in polymer
monoliths for ion-exchange
chromato-graphy. Analytical and Bioanalytical Chemistry, 394(1): 71 – 84.
9.
Xu,
Y., Cao, Q., Svec, F. and Fréchet, J. M. J. (2010). Porous polymer monolithic column with
surface-bound gold nanoparticles for the capture and separation of
cysteine-containing peptides. Analytical Chemistry, 82(8): 3352 – 3358.
10.
Lv,
Y.-Q., Fu, D.-Y., Tan, T.-W. and Wang, M.-Y. (2010). One-step purification of YLLIP2
isoforms from Candida sp. 99–125 by
polyethyleneimine modified poly(glycidyl methacrylate-co-ethylene glycol
dimetha-crylate) monolith. Journal of Molecular Catalysis B: Enzymatic, 62(2): 149 – 154.
11.
Chen,
M. L., Wei, S. S., Yuan, B. F. and Feng, Y. Q. (2012). Preparation of methacrylate-based
monolith for capillary hydrophilic interaction chromatography and its application
in determination of nucleosides in urine. Journal
of Chromatography A, 1228: 183 – 192.
12.
Liu,
W., Qi, J., Yan, L., Jia, Q. and Yu, C. (2011). Application of poly(butyl
methacrylate-co-ethylene glycol dimethacrylate) monolith microextraction coupled
with high performance liquid
chromatography to the deter-mination of polycyclic aromatic hydrocarbons in smoked meat products.
Journal of Chromatography B, 879 (28): 3012 – 3016.
13.
Li, Y., Qi, L. and Ma, H. (2013). Preparation of porous
polymer monolithic column using
functionalized graphene oxide as a
functional crosslinker for high performance liquid chromatography separation of small molecules. The Analyst,
138(18): 5470 – 5478.
14.
Nandi, M. and Uyama, H. (2014). Porous acrylate
monolith supported Pd nanoparticles:
Highly active and reusable catalyst for
Suzuki–Miyaura reaction in water. RSC Advances, 4(40): 20847 – 20855.
15.
Ou, J., Lin, H., Zhang, Z., Huang, G., Dong, J. and Zou, H.
(2013). Recent advances in preparation and appli-cation of hybrid
organic-silica monolithic capillary columns. Electrophoresis, 34(1): 126 – 140.
16.
Yuan, H., Zhang, L.
and Zhang, Y. (2012). Comprehensive
sampling and sample
preparation: Analytical techniques for scientists.
Academic Press, Elsevier Inc, Amsterdam.
2: pp. 345 – 358.
17.
Xu, L. and Lee, H. K. (2008). Preparation, characterization and analytical
application of a hybrid organic-inorganic
silica-based monolith. Journal of Chromatography A, 1195 (1–2): 78 – 84.
18.
Anuar,
S. T., Zhao, Y-Y., Mugo, S. M. and Curtis, J. M. (2013). The development
of a capillary microreactor for
transesterification reactions using lipase immobilized onto a silica monolith. Journal
of Molecular Catalysis B: Enzymatic, 92: 62 – 70.
19.
Anuar,
S. T., Mugo, S. M. and Curtis, J. M. (2015). A flow-through
enzymatic microreactor for the
rapid conversion of triacylglycerols
into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC
analysis. Analytical Methods, 7(14):
5898 – 5906.
20.
Wu, M., Wu, R., Zhang, Z. and Zou, H. (2011). Preparation and
application of organic-silica hybrid monolithic capillary columns. Electrophoresis,
32(1): 105 – 115.
21.
Wang,
J., Wu, F., Xia, R., Zhao, Q., Lin, X. and Xie, Z. (2016). Rapid fabrication of
ionic liquid-functionalized monolithic column via in-situ urea-formaldehyde polycondensation for
pressurized capillary electrochromato-graphy. Journal of Chromatography A,
1449: 100 – 108.
22.
Xie, C., Ye, M., Jiang, X., Jin, W. and Zou, H. (2006). Octadecylated silica monolith
capillary column with
integrated nanoelectrospray ionization emitter for highly efficient
proteome analysis. Molecular and Cellular
Proteomics, 454 – 461.
23.
Hayes,
J. and Malik, A. (2000). Sol-gel monolithic columns with reversed electroosmotic flow for capillary
electrochromatography. Analytical Chemistry, 72(17): 4090 – 4099.
24.
Battisha,
I. K., El Beyally, A., Abd El Mongy, S. and Nahrawi, A. M. (2007). Development of the FTIR pro-perties of nano-structure silica gel
doped with different rare earth elements, prepared by sol-gel route. Journal of
Sol-Gel Science and Technology, 41
(2): 129 – 137.
25.
Andrade, G. F., Soares, D. C. F., Almeida, R. K. D. S. and
Sousa, E. M. B. (2012). Mesoporous
silica SBA-16 functionalized with alkoxysilane groups: preparation, characterization, and release profile study. Journal
of Nanomaterials, 2012: 1 –
10.
26.
Nocuń, M., Siwulski, S., Leja, E. and Jedliński, J. (2005).
Structural studies of TEOS-tetraethoxytitanate based hybrids. Optical
Materials, 27(9): 1523 –
1528.
27.
Thommes,
M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-reinoso, F., Rouquerol, J. and Sing, K. S. W. (2015). Physisorption of gases,
with special reference to the evaluation of surface area and pore
size distribution (IUPAC Technical Report), Pure
and Applied Chemistry, 87(9-10):
1051 – 1069.
28.
Zheng, M. M., Ruan, G. D. and Feng, Y. Q. (2009). Hybrid
organic-inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent
for micro-solid phase extraction. Journal of Chromato-graphy A, 1216(45): 7739 – 7746.
29.
Thejaswini, T. V. L., Prabhakaran, D. and Maheswari,
M. A. (2017). Structurally engineered TiO2–SiO2 monolithic
designs for the enhanced photocatalytic degradation of organic textile dye
pollutants. Functional Materials Letters, 10(2): 2 – 5.
30.
Ahmad, A.,
Razali, M.H., Kassim, K. and Mat Amin, K.A. (2017). Synthesis of multiwalled carbon nanotubes
supported on M/MCM-41 (M = Ni, Co and Fe) mesoporous catalyst by chemical vapour deposition method. Journal of Porous Materials, 1-9.