Malaysian Journal of Analytical Sciences Vol 22 No 1 (2018): 17 - 26

DOI: https://doi.org/10.17576/mjas-2018-2201-03

 

 

 

SYNTHESIS AND CHARACTERIZATION OF MESOPOROUS POLYMER-SILICA HYBRID MONOLITH USING CONVENTIONAL SOL-GEL METHOD FOR ENZYME SUPPORT

 

(Sintesis dan Pencirian Monolit Hibrid Polimer-Silika Berliang-Meso Menggunakan Kaedah Konvensional Sol-Gel Untuk Bertindak Sebagai Sokongan Enzim)

 

Noor Hidayah Idrohani1, Samuel M. Mugo2, Sabiqah Tuan Anuar1*

 

1School of Marine and Environmental Sciences,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2Department of Physical Sciences,

Mac Ewan University, Edmonton, Alberta, T5J 4S2, Canada

 

*Corresponding author:  sabiqahanuar@umt.edu.my

 

 

Received: 26 August 2017; Accepted: 2 January 2018

 

 

Abstract

This research involved developing a novel solid support for an enzyme attachment, focusing on synthesizing a polymer-silica hybrid monolith via in-situ sol-gel polymerization method. The fabrication of a very large surface area of the monolith was done using a cold mixture of poly(ethylene-glycol) (PEG) with tetraethyl-orthosilicate (TEOS) and acetic acid with different ratios of PEG amount and molecular weights, namely PEG-0.1, PEG-0.2, and PEG-0.3. The experiments were conducted at a very low temperature of 0 °C, followed by overnight gelification and aging. The sol then underwent calcination at 200 °C forming a hybrid monolith. The characterizations of hybrid monoliths were performed by Attenuated-Total Reflection–Fourier Transformed Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscope (SEM), and Surface Area and Porosity Analyzer using both Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods to describe the developed monoliths. FTIR shows the presence of Si-O-Si stretching associated with the monolith network due to the polymerization process together with the presence of silanol functional group (Si-OH) that can be exploited further for covalent attachment with the enzyme. Results also showed that the optimum ratios for the hybrid polymer-silica synthesis were PEG-0.1with 10,000 Mn surface area of mesoporous network recorded for 494.121 m2/g and pore volume of 0.265 cm3/g. These findings showed that the synthesized hybrid monolith on fused silica capillary will provide a vast surface area with desirable functional groups; thus, very promising for lipase immobilization support that can be used in future small-scale lipid transformation.

 

Keywords:  hybrid monolith, fused silica capillary, sol-gel polymerization, enzyme support, mesoporous monolith

 

Abstrak

Penyelidikan ini melibatkan penghasilan satu sokongan baru untuk tautan enzim yang mana berfokuskan kepada sintesis monolit hibrid polimer-silika melalui kaedah pempolimeran sol-gel secara in-situ. Pemfabrikatan monolit yang mempunyai luas permukaan yang sangat besar telah dilakukan menggunakan campuran sejuk daripada poli(etilina-glikol)(PEG) dengan tetraetil-ortosilikat (TEOS) dan  asid asetik pada nisbah bagi jumlah dan berat molekular PEG yang berbeza, dan dinamakan PEG-0.1, PEG-0.2 dan PEG-0.3. Eksperimen telah dijalankan dalam suhu yang sangat rendah pada 0°C diikuti dengan pengegelan dan penuaan untuk semalaman. Sol tersebut kemudiannya melalui proses kalsinasi pada suhu 200 °C lalu membentuk hibrid monolit. Hibrid monolit yang dihasilkan telah dicirikan melalui inframerah transformasi Fourier (FTIR), mikroskop pengimbas elektron (SEM) dan penganalisa rongga dan luas permukaan menggunakan kaedah Brunauer-Emmett-Teller (BET) dan Barrett-Joyner-Halenda (BJH) untuk menggambarkan monolit yang telah terbentuk. Keputusan dari FTIR menunjukkan kehadiran regangan Si-O-Si daripada jaringan monolit disebabkan proses pempolimeran, bersama-sama dengan kehadiran kumpulan berfungsi silanol (Si-OH) yang boleh dieksplotasi untuk digunakan di dalam tautan kovalen dengan enzim.  Didapati bahawa nisbah optima bagi sintesis polimer-silika hibrid adalah PEG-0.1 dengan berat molekul 10,000 Mn, yang mempunyai luas permukaan bagi jaringan liang-meso sebanyak 494.121 m2/g dan isipadu liang 0.265 cm3/g. Keputusan tersebut menunjukkan hibrid monolit yang disintesis di dalam kapilari silika kosong boleh menghasilkan luas permukaan yang sangat besar, dan berpotensi sebagai sokongan untuk pemegunan lipase bagi transformasi lipid berskala kecil di masa hadapan.

 

Kata kunci:    campuran monolit, kapilari silika kosong, pempolimeran sol-gel, sokongan enzim, monolit berliang-meso

 

References

1.       Vázquez, M. and Paull, B. (2010). Review on recent and advanced applications of monoliths and related porous polymer gels in micro-fluidic devices. Analytica Chimica Acta, 668(2): 100 – 113.

2.       Nema, T., Chan, E. C. Y. and Ho, P. C. (2014).  Applications  of  monolithic  materials for sample preparation. Journal of Pharmaceutical and Biomedical Analysis, 87: 130 – 141.

3.       Bakry, R., Huck, C. W. and Bonn, G. K. (2009).  Recent  applications  of  organic monoliths in capillary liquid chromatographic separation of biomolecules. Journal of Chromatographic Science, 47(6): 418 – 431.

4.       Gaweł, B., Gaweł, K. and Øye, G. (2010). Sol-gel synthesis of non-silica monolithic materials. Materials, 3(4): 2815 – 2833.

5.       Nic, M., Jirat, J., and Kosata, B. (2012). IUPAC gold book. http://goldbook.iupac.org/MT07559.html. [Access online 02 April 2016].

6.       Svec, F. (2002).  Advances  in  biochemical engineering/biotechnology: Modern advances in chromatography. Springer-Verlag Berlin Heidelberg, New York. 76: pp. 1 – 47.

7.       Rieux, L.,  Niederländer, H.,  Verpoorte, E.  and  Bischoff, R. (2005).  Silica  monolithic  columns:  Synthesis, characterisation and applications to the analysis of biological molecules. Journal of Separation Science, 28(14): 1628 – 1641.

8.       Nordborg, A. and Hilder, E. F. (2009).  Recent  advances  in  polymer  monoliths  for  ion-exchange chromato-graphy. Analytical and Bioanalytical Chemistry, 394(1): 71 – 84.

9.       Xu, Y., Cao, Q., Svec, F. and Fréchet, J. M. J. (2010).  Porous polymer monolithic column with surface-bound gold nanoparticles  for  the capture and separation of cysteine-containing peptides. Analytical Chemistry, 82(8): 3352 – 3358.

10.    Lv, Y.-Q., Fu, D.-Y., Tan, T.-W. and Wang, M.-Y. (2010).  One-step  purification  of  YLLIP2 isoforms from Candida sp. 99–125  by  polyethyleneimine  modified  poly(glycidyl methacrylate-co-ethylene glycol dimetha-crylate) monolith. Journal of Molecular Catalysis B: Enzymatic, 62(2): 149 – 154.

11.    Chen, M. L., Wei, S. S., Yuan, B. F. and Feng, Y. Q. (2012).  Preparation  of  methacrylate-based monolith for capillary hydrophilic interaction chromatography and its application in determination of nucleosides in urine. Journal of Chromatography A, 1228: 183 – 192.

12.    Liu, W., Qi, J., Yan, L., Jia, Q. and Yu, C. (2011).  Application  of  poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith microextraction coupled with high performance  liquid chromatography to the deter-mination  of  polycyclic  aromatic hydrocarbons in smoked meat products. Journal of Chromatography  B, 879 (28): 3012 – 3016.

13.    Li, Y., Qi, L.  and  Ma, H. (2013).  Preparation  of  porous  polymer  monolithic  column  using  functionalized graphene oxide as a functional  crosslinker for  high performance  liquid chromatography  separation of small molecules. The Analyst, 138(18): 5470 – 5478.

14.    Nandi, M. and Uyama, H. (2014).  Porous  acrylate  monolith  supported  Pd  nanoparticles:  Highly active and reusable catalyst for Suzuki–Miyaura reaction in water. RSC Advances, 4(40): 20847 – 20855.

15.    Ou, J., Lin, H., Zhang, Z., Huang, G., Dong, J. and Zou, H. (2013).  Recent  advances  in preparation and appli-cation of hybrid organic-silica monolithic capillary columns. Electrophoresis, 34(1): 126 – 140.

16.    Yuan, H.,  Zhang, L. and   Zhang, Y.  (2012).  Comprehensive  sampling  and  sample  preparation:  Analytical techniques for scientists. Academic Press, Elsevier Inc, Amsterdam.  2: pp. 345 – 358.

17.    Xu, L. and Lee, H. K. (2008).  Preparation,  characterization  and  analytical  application  of  a  hybrid  organic-inorganic silica-based monolith. Journal of Chromatography A, 1195 (1–2): 78 – 84.

18.    Anuar, S. T., Zhao, Y-Y., Mugo, S. M. and Curtis, J. M. (2013).  The  development of  a capillary microreactor for transesterification reactions using lipase immobilized onto a silica monolith. Journal of Molecular Catalysis B: Enzymatic, 92: 62 – 70.

19.    Anuar, S. T.,  Mugo, S. M. and  Curtis, J. M. (2015).  A  flow-through  enzymatic  microreactor  for  the  rapid conversion of triacylglycerols into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC analysis. Analytical Methods, 7(14): 5898 – 5906.

20.    Wu, M., Wu, R., Zhang, Z. and Zou, H. (2011). Preparation and application of organic-silica hybrid monolithic capillary columns. Electrophoresis, 32(1): 105 – 115.

21.    Wang, J., Wu, F., Xia, R., Zhao, Q., Lin, X. and Xie, Z. (2016). Rapid fabrication of ionic liquid-functionalized monolithic  column via  in-situ urea-formaldehyde polycondensation for pressurized capillary electrochromato-graphy. Journal of Chromatography A, 1449: 100 – 108.

22.    Xie, C., Ye, M., Jiang, X., Jin, W. and Zou, H. (2006).  Octadecylated  silica  monolith  capillary  column  with integrated  nanoelectrospray  ionization emitter for highly efficient proteome analysis. Molecular and Cellular Proteomics, 454 – 461.

23.    Hayes, J. and Malik, A. (2000).  Sol-gel  monolithic  columns  with  reversed electroosmotic flow for capillary electrochromatography. Analytical Chemistry, 72(17): 4090 – 4099.

24.    Battisha, I. K., El Beyally, A., Abd El Mongy, S. and Nahrawi, A. M. (2007).  Development  of  the  FTIR pro-perties of nano-structure silica gel doped with different rare earth elements,  prepared by sol-gel route. Journal of Sol-Gel Science and Technology, 41 (2): 129 – 137.

25.    Andrade, G. F., Soares, D. C. F., Almeida, R. K. D. S. and Sousa, E. M. B. (2012).  Mesoporous silica SBA-16 functionalized  with  alkoxysilane  groups:  preparation,  characterization, and release profile study. Journal of Nanomaterials, 2012: 1 – 10.

26.    Nocuń, M., Siwulski, S., Leja, E. and Jedliński, J. (2005). Structural studies of TEOS-tetraethoxytitanate based hybrids. Optical Materials, 27(9): 1523 – 1528.

27.    Thommes, M.,  Kaneko, K.,  Neimark, A. V.,  Olivier, J. P.,  Rodriguez-reinoso, F.,  Rouquerol, J.  and Sing, K. S. W. (2015).  Physisorption  of  gases,  with  special  reference  to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87(9-10): 1051 – 1069.

28.    Zheng, M. M., Ruan, G. D. and Feng, Y. Q. (2009). Hybrid organic-inorganic silica monolith with hydrophobic/strong  cation-exchange functional groups as a sorbent for micro-solid phase extraction. Journal of Chromato-graphy A, 1216(45): 7739 – 7746.

29.    Thejaswini,  T. V. L.,  Prabhakaran, D.  and  Maheswari,  M. A. (2017).   Structurally  engineered  TiO2–SiO2 monolithic designs for the enhanced photocatalytic degradation of organic textile dye pollutants. Functional Materials Letters, 10(2): 2 – 5.

30.    Ahmad, A., Razali, M.H., Kassim, K. and Mat Amin, K.A. (2017).  Synthesis of multiwalled carbon nanotubes supported on M/MCM-41 (M = Ni, Co and Fe)  mesoporous  catalyst  by chemical  vapour deposition method. Journal of Porous Materials, 1-9.

 

 

 




Previous                    Content                    Next