Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1276 - 1288

DOI: 10.17576/mjas-2017-2106-09

 

 

 

SINTESIS MnO2 NANOBUNGA POROS MENGGUNAKAN TEMPLAT SILIKA-APTES

 

(Synthesis of Porous MnO2 Nanoflower using Silica-APTES Template)

 

Siti Zubaidah Hasan1, Mohamed Rozali Othman1,2*, Muhammad Rahimi Yusop1

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan

2Pusat Penyelidikan Air dan Analisis

Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Pengarang utama:  rozali@ukm.edu.my

 

 

Received: 19 May 2017; Accepted: 20 September 2017

 

 

Abstrak

Tujuan kajian ini dilakukan adalah untuk menyediakan MnO2 poros nano yang mempunyai bentuk nanobunga untuk digunakan sebagai penjerap pewarna sintetik komersial (remazol merah, eriokrom hitam dan metilena biru). Permukaan bahan silika yang telah diubahsuai dengan 3-aminopropil trietoksisilana (APTES) digunakan dalam proses sonokimia pada suhu bilik dengan kehadiran 0.1M KMnO4 untuk menghasilkan komposit silika-MnO2 dan seterusnya MnO2 bersaiz nano selepas proses penyingkiran templat dilakukan. Spektrum FTIR menunjukkan kehadiran getaran MnO2 dalam julat 400 – 600 cm-1. Analisis jerap-nyahjerap N2 menunjukkan MnO2 tulen memiliki liang yang bersifat mesoporos 51.9 Å (± 1.4), manakala luas permukaan MnO2 ialah 123.6 m2/g. Penjerap MnO2 nanobunga yang diperolehi menunjukkan kebolehan menjerap pewarna eriokrom hitam dan metilena biru sahaja. Kedua-dua isoterma penjerapan eriokrom hitam dan metilena biru oleh MnO2 menepati ciri-ciri model Langmuir.

 

Kata kunci:  sonokimia, logam oksida, jerapan

 

Abstract

The aim of this study is to prepare porous MnO2 nanoflower to be used as an adsorbent for commercial synthetic dyes (remazol red, eriochrome black and methylene blue). The modified surface of the silica with 3-aminopropyl triethoxysilane (APTES) was used in sonochemical process at room temperature in the presence of 0.1M KMnO4 to produce composite silica-MnO2 and later nano-MnO2 after removal of the template. FTIR spectra indicate the presence of MnO2 vibration in the range of 400 – 600 cm-1. N2 sorption-desorption analysis showed pure MnO2 is mesopores with the value of 51.9 Å (± 1.4), while the MnO2 surface area is 123.6 m2/g. MnO2 nanoflower adsorbent obtained demonstrate the ability to adsorb dye eriochrome black and methylene blue only. Both adsorption isotherms of eriochrome black and methylene blue by MnO2 meet the characteristics of Langmuir model.

 

Keywords:  sonochemical, metal oxides, adsorption

 

References

1.       Henglein, A. (1989). Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chemical Reviews, 89(8): 1861 – 1873.

2.       Suslick, K. S., Choe, S. B., Cichowlas, A. A. and Grinstaff, M. W. 1991. Sonochemical synthesis of amorphous iron. Nature, 353(6343): 414 – 416.

3.       Emsley, J. (2014). In your element: manganese the protector. Nature Chemistry, 6(11): 1026 – 1026.

4.       Therese, G. H. A. and Kamath, P. V. (2000). Electrochemical synthesis of metal oxides and hydroxides. Chemistry of Materials, 12(5): 1195 – 1204.

5.       Titirici, M. M., Antonietti, M. and Thomas, A. (2006). A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chemistry of Materials, 18(16): 3808 – 3812.

6.       Patil, S. A., Shinde, D. V., Ahn, D. Y., Patil, D. V., Tehare, K. K., Jadhav, V. V., Lee, J. K., Mane, R. S., Shrestha, N. K. and Han, S. H. (2014). A simple, room temperature, solid-state synthesis route for metal oxide nanostructures. Journal of Materials Chemistry A, 2(33): 13519 – 13526.

7.       Lagashetty, A., Havanoor, V., Basavaraja, S., Balaji, S. D and Venkataraman, A. (2007). Microwave-assisted route for synthesis of nanosized metal oxides. Science and Technology of Advanced Materials, 8(6): 484 – 493.

8.       Kumar, R. V., Diamant, Y. and Gedanken, A. (2000). Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chemistry of Materials, 12(8): 2301 – 2305.

9.       Suslick, K. S., Hyeon, T., Fang, M. and Cichowlas, A. A. (1995). Sonochemical synthesis of nanostructured catalysts. Materials Science and Engineering A, 204(1): 186 – 192.

10.    Dupont, M., Hollenkamp, A. F. and Donne S. W. (2013). Electrochemically active surface area effects on the performance of manganese dioxide for electrochemical capacitor applications. Electrochimica Acta, 104: 140 – 147.

11.    Ge, J. and Qu, J. (2003). Degradation of azo dye acid red b on manganese dioxide in the absence and presence of ultrasonic irradiation. Journal of Hazardous Materials, 100(1–3): 197 – 207.

12.    Ilyas, M. and Saeed, M. (2011). Synthesis and characterization of manganese oxide and investigation of its catalytic activities for oxidation of benzyl alcohol in liquid phase. International Journal of Chemical Reactor Engineering, 9(1): A75.

13.    Ren, Y., Chen, Z., Cai, Y. and Lin, J. (2011). Electrosynthesis of glyceraldehyde by cyclic nano-MnO2/Mn2+ in bipolar membrane-equipped electrolytic cell. Electrochemistry Communications, 13(12): 1317 – 1319.

14.    Kyzas, G. Z., Fu, J. and Matis, K. A. (2013). The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials, 6(11): 5131 – 5158.

15.    Pang, Y. L. and Abdullah, A. Z. (2013). Current status of textile industry wastewater management and research progress in Malaysia: A review. CLEAN–Soil, Air, Water, 41(8): 751 – 764.

16.    Manning, B. W., Cerniglia, C. E. and Federle, T. W. (1985). Metabolism of the benzidine-based azo dye direct black 38 by human intestinal microbiota. Applied and Environmental Microbiology, 50(1): 10 –15.

17.    Nony, C. R. and Bowman, M. C. (1980). Trace analysis of potentially carcinogenic metabolites of an azo dye and pigment in hamster and human urine as determined by two chromatographic procedures. Journal of Chromatographic Science, 18(2): 64 – 74.

18.    Abdullah, A. H. and Wong, W. Y. (2010). Decolorization of reactive orange 16 dye by copper oxide system. Sains Malaysiana, 39(4): 587 – 591.

19.    Cui, H. J., Huang, H. Z., Yuan, B. and Fu, M. L. (2015). Decolorization of RhB dye by manganese oxides: effect of crystal type and solution pH. Geochemical Transactions, 16(1): 10.

20.    Chen, R., Yu, J. and Xiao, W. (2013). Hierarchically porous MnO2 microspheres with enhanced adsorption performance. Journal of Materials Chemistry A, 1(38): 11682 – 11690.

21.    Cao, J., Mao, Q., Shi, L. and Qian, Y. (2011). Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. Journal of Materials Chemistry, 21(40): 16210 –16215.

22.    Fei, J., Cui, Y., Yan, X. H., Qi, W., Yang, Y., Wang, K. W., He, Q. and Li, J. B. (2008). Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Advanced Materials, 20(3): 452 – 456.

23.    Chen, H. and He, J. (2008). Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. Journal of Physical Chemistry C, 112(45): 17540 – 17545.

24.    Hasan, S. Z., Yusop, M. R. and Othman, M. R. (2015). Sintesis amorfus mangan dioksida (MnO2) nano-poros menggunakan proses sonokimia dan bukan sonokimia. Malaysian Journal of Analytical Sciences, 19(2): 388 – 396.

25.    Antony, R., David Manickam, S. T., Kollu, P., Chandrasekar, P. V., Karuppasamy, K. and Balakumar, S. (2014). Highly dispersed Cu(II), Co(II) and Ni(II) catalysts covalently immobilized on imine-modified silica for cyclohexane oxidation with hydrogen peroxide. RSC Advances, 4(47): 24820 – 24830.

26.    Ryu, S. H., Hwang, S. G., Yun, S. R., Cho, K. K., Kim, K. W. and Ryu, K. S. (2011). Synthesis and electrochemical characterization of silica-manganese oxide with a core-shell structure and various oxidation states. Bulletin of the Korean Chemical Society, 32(8): 2683 – 2688.

27.    Zhao, Y., Li, J., Hu, J., Shu, L. and Shi, X. (2011). Fabrication of super-hydrophobic surfaces with long-term stability. Journal of Dispersion Science Technology, 32(7): 969 – 974.

28.    Huang, M., Zhang, Y., Li, F. Zhang, L., Ruoff, R. S., Wen, Z. and Liu, Q. (2014). Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Scientific Reports, 4: 3878.

29.    Ding, K. Q. (2010). Cyclic voltammetrically prepared copper-decorated MnO2 and its electrocatalysis for oxygen reduction reaction (ORR). International Journal of Electrochemical Science, 5: 72 – 87.

30.    Asouhidou, D. D., Triantafyllidis, K. S., Lazaridis, N. K. and Matis, K. A. (2012). Adsorption of reactive dyes from aqueous solutions by layered double hydroxides. Journal of Chemical Technology and Biotechnology, 87(4): 575 – 582.

31.    Asouhidou, D. D., Triantafyllidis, K. S., Lazaridis, N. K. and Matis, K. A. (2009). Adsorption of remazol merah from aqueous solutions using APTES and cyclodextrin-modified HMS-type mesoporous silicas. Colloids and Surfaces A: Physicochemical Engineering Aspects, 346(1–3): 83 – 90.

32.    Santos, D., de Lourdes N. S. M., Costa, J., de Jesus, R., Navickiene, S., Sussuchi, E. and de Mesquita, M. (2013). Investigating the potential of functionalized MCM-41 on adsorption of remazol red dye. Environmental Science and Pollution Research, 20(7): 5028 – 5035.

33.    Nassar, N. N. and Ringsred, A. (2012). Rapid adsorption of metilena biru from aqueous solutions by goethite nanoadsorbents. Environmental Engineering Science, 29(8): 790 – 797.

 




Previous                    Content                    Next