Malaysian Journal of Analytical Sciences Vol 21 No 6
(2017): 1276 - 1288
DOI:
10.17576/mjas-2017-2106-09
SINTESIS MnO2 NANOBUNGA POROS MENGGUNAKAN TEMPLAT
SILIKA-APTES
(Synthesis of Porous MnO2 Nanoflower
using Silica-APTES Template)
Siti
Zubaidah Hasan1, Mohamed Rozali Othman1,2*, Muhammad
Rahimi Yusop1
1Pusat Pengajian
Sains Kimia dan Teknologi Makanan
2Pusat
Penyelidikan Air dan Analisis
Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
*Pengarang utama:
rozali@ukm.edu.my
Received:
19 May 2017; Accepted: 20 September 2017
Abstrak
Tujuan
kajian ini dilakukan adalah untuk menyediakan MnO2 poros nano yang
mempunyai bentuk nanobunga untuk digunakan sebagai penjerap pewarna sintetik
komersial (remazol merah, eriokrom hitam dan metilena biru). Permukaan bahan
silika yang telah diubahsuai dengan 3-aminopropil trietoksisilana (APTES)
digunakan dalam proses sonokimia pada suhu bilik dengan kehadiran 0.1M KMnO4
untuk menghasilkan komposit silika-MnO2 dan seterusnya MnO2
bersaiz nano selepas proses penyingkiran templat dilakukan. Spektrum FTIR
menunjukkan kehadiran getaran MnO2 dalam julat 400 – 600 cm-1.
Analisis jerap-nyahjerap N2 menunjukkan MnO2 tulen
memiliki liang yang bersifat mesoporos 51.9 Å (± 1.4), manakala luas permukaan
MnO2 ialah 123.6 m2/g. Penjerap MnO2 nanobunga
yang diperolehi menunjukkan kebolehan menjerap pewarna eriokrom hitam dan
metilena biru sahaja. Kedua-dua isoterma penjerapan
eriokrom hitam dan metilena biru oleh MnO2 menepati ciri-ciri model
Langmuir.
Kata kunci: sonokimia, logam oksida, jerapan
Abstract
The
aim of this study is to prepare porous MnO2 nanoflower to be used as
an adsorbent for commercial synthetic dyes (remazol red, eriochrome black and
methylene blue). The modified surface of the silica with 3-aminopropyl
triethoxysilane (APTES) was used in sonochemical process at room temperature in
the presence of 0.1M KMnO4 to produce composite silica-MnO2
and later nano-MnO2 after removal of the template. FTIR spectra
indicate the presence of MnO2 vibration in the range of 400 – 600 cm-1.
N2 sorption-desorption analysis showed pure MnO2 is
mesopores with the value of 51.9 Å (± 1.4), while the MnO2 surface
area is 123.6 m2/g. MnO2 nanoflower adsorbent obtained
demonstrate the ability to adsorb dye eriochrome black and methylene blue only.
Both adsorption isotherms of eriochrome black and methylene blue by MnO2
meet the characteristics of Langmuir model.
Keywords: sonochemical, metal oxides, adsorption
References
1.
Henglein,
A. (1989). Small-particle research: physicochemical properties of extremely
small colloidal metal and semiconductor particles. Chemical Reviews,
89(8): 1861 – 1873.
2.
Suslick,
K. S., Choe, S. B., Cichowlas, A. A. and Grinstaff, M. W. 1991. Sonochemical
synthesis of amorphous iron. Nature, 353(6343): 414 – 416.
3.
Emsley,
J. (2014). In your element: manganese the protector. Nature Chemistry,
6(11): 1026 – 1026.
4.
Therese,
G. H. A. and Kamath, P. V. (2000). Electrochemical synthesis of metal oxides
and hydroxides. Chemistry of Materials, 12(5): 1195 – 1204.
5.
Titirici,
M. M., Antonietti, M. and Thomas, A. (2006). A generalized synthesis of metal
oxide hollow spheres using a hydrothermal approach. Chemistry of Materials,
18(16): 3808 – 3812.
6.
Patil,
S. A., Shinde, D. V., Ahn, D. Y., Patil, D. V., Tehare, K. K., Jadhav, V. V.,
Lee, J. K., Mane, R. S., Shrestha, N. K. and Han, S. H. (2014). A simple, room
temperature, solid-state synthesis route for metal oxide nanostructures. Journal
of Materials Chemistry A, 2(33):
13519 – 13526.
7.
Lagashetty,
A., Havanoor, V., Basavaraja, S., Balaji, S. D and Venkataraman, A. (2007).
Microwave-assisted route for synthesis of nanosized metal oxides. Science
and Technology of Advanced Materials, 8(6): 484 – 493.
8.
Kumar,
R. V., Diamant, Y. and Gedanken, A. (2000). Sonochemical synthesis and
characterization of nanometer-size transition metal oxides from metal acetates. Chemistry
of Materials, 12(8): 2301 – 2305.
9.
Suslick,
K. S., Hyeon, T., Fang, M. and Cichowlas, A. A. (1995). Sonochemical synthesis
of nanostructured catalysts. Materials Science and Engineering A,
204(1): 186 – 192.
10.
Dupont,
M., Hollenkamp, A. F. and Donne S. W. (2013). Electrochemically active surface
area effects on the performance of manganese dioxide for electrochemical
capacitor applications. Electrochimica Acta, 104: 140 – 147.
11.
Ge,
J. and Qu, J. (2003). Degradation of azo dye acid red b on manganese dioxide in
the absence and presence of ultrasonic irradiation. Journal of Hazardous
Materials, 100(1–3): 197 – 207.
12.
Ilyas,
M. and Saeed, M. (2011). Synthesis and characterization of manganese oxide and
investigation of its catalytic activities for oxidation of benzyl alcohol in
liquid phase. International Journal of Chemical Reactor Engineering, 9(1): A75.
13.
Ren,
Y., Chen, Z., Cai, Y. and Lin, J. (2011). Electrosynthesis of glyceraldehyde by
cyclic nano-MnO2/Mn2+ in bipolar membrane-equipped
electrolytic cell. Electrochemistry Communications, 13(12):
1317 – 1319.
14.
Kyzas,
G. Z., Fu, J. and Matis, K. A. (2013). The change from past to future for
adsorbent materials in treatment of dyeing wastewaters. Materials, 6(11): 5131 – 5158.
15.
Pang,
Y. L. and Abdullah, A. Z. (2013). Current status of textile industry wastewater
management and research progress in Malaysia: A review. CLEAN–Soil, Air, Water,
41(8): 751 – 764.
16.
Manning,
B. W., Cerniglia, C. E. and Federle, T. W. (1985). Metabolism of the
benzidine-based azo dye direct black 38 by human intestinal microbiota. Applied
and Environmental Microbiology, 50(1): 10 –15.
17.
Nony,
C. R. and Bowman, M. C. (1980). Trace analysis of potentially carcinogenic
metabolites of an azo dye and pigment in hamster and human urine as determined
by two chromatographic procedures. Journal of Chromatographic Science,
18(2): 64 – 74.
18.
Abdullah,
A. H. and Wong, W. Y. (2010). Decolorization of reactive orange 16 dye by
copper oxide system. Sains Malaysiana, 39(4): 587 – 591.
19.
Cui,
H. J., Huang, H. Z., Yuan, B. and Fu, M. L. (2015). Decolorization of RhB dye
by manganese oxides: effect of crystal type and solution pH. Geochemical Transactions,
16(1): 10.
20.
Chen,
R., Yu, J. and Xiao, W. (2013). Hierarchically porous MnO2
microspheres with enhanced adsorption performance. Journal of Materials
Chemistry A, 1(38): 11682 – 11690.
21.
Cao,
J., Mao, Q., Shi, L. and Qian, Y. (2011). Fabrication of γ-MnO2/α-MnO2
hollow core/shell structures and their application to water treatment. Journal
of Materials Chemistry, 21(40): 16210 –16215.
22.
Fei,
J., Cui, Y., Yan, X. H., Qi, W., Yang, Y., Wang, K. W., He, Q. and Li, J. B.
(2008). Controlled preparation of MnO2 hierarchical hollow
nanostructures and their application in water treatment. Advanced Materials, 20(3): 452 – 456.
23.
Chen,
H. and He, J. (2008). Facile synthesis of monodisperse manganese oxide
nanostructures and their application in water treatment. Journal of Physical Chemistry C, 112(45): 17540 – 17545.
24.
Hasan,
S. Z., Yusop, M. R. and Othman, M. R. (2015). Sintesis amorfus mangan dioksida
(MnO2) nano-poros menggunakan proses sonokimia dan bukan sonokimia. Malaysian
Journal of Analytical Sciences, 19(2): 388 – 396.
25.
Antony,
R., David Manickam, S. T., Kollu, P., Chandrasekar, P. V., Karuppasamy, K. and
Balakumar, S. (2014). Highly dispersed Cu(II), Co(II) and Ni(II) catalysts
covalently immobilized on imine-modified silica for cyclohexane oxidation with
hydrogen peroxide. RSC Advances, 4(47): 24820 – 24830.
26.
Ryu,
S. H., Hwang, S. G., Yun, S. R., Cho, K. K., Kim, K. W. and Ryu, K. S. (2011).
Synthesis and electrochemical characterization of silica-manganese oxide with a
core-shell structure and various oxidation states. Bulletin of the Korean
Chemical Society, 32(8): 2683 – 2688.
27.
Zhao,
Y., Li, J., Hu, J., Shu, L. and Shi, X. (2011). Fabrication of
super-hydrophobic surfaces with long-term stability. Journal of Dispersion
Science Technology, 32(7): 969 – 974.
28.
Huang,
M., Zhang, Y., Li, F. Zhang, L., Ruoff, R. S., Wen, Z. and Liu, Q. (2014).
Self-assembly of mesoporous nanotubes assembled from interwoven ultrathin
birnessite-type MnO2 nanosheets for asymmetric supercapacitors. Scientific
Reports, 4: 3878.
29.
Ding,
K. Q. (2010). Cyclic voltammetrically prepared copper-decorated MnO2
and its electrocatalysis for oxygen reduction reaction (ORR). International Journal
of Electrochemical Science, 5: 72 – 87.
30.
Asouhidou,
D. D., Triantafyllidis, K. S., Lazaridis, N. K. and Matis, K. A. (2012).
Adsorption of reactive dyes from aqueous solutions by layered double hydroxides. Journal
of Chemical Technology and Biotechnology, 87(4): 575 – 582.
31.
Asouhidou, D. D.,
Triantafyllidis, K. S., Lazaridis, N. K. and Matis, K. A. (2009). Adsorption of
remazol merah from aqueous solutions using APTES and cyclodextrin-modified
HMS-type mesoporous silicas. Colloids and Surfaces A: Physicochemical
Engineering Aspects, 346(1–3): 83 – 90.
32.
Santos,
D., de Lourdes N. S. M., Costa, J., de Jesus, R., Navickiene, S., Sussuchi, E.
and de Mesquita, M. (2013). Investigating the potential of functionalized
MCM-41 on adsorption of remazol red dye.
Environmental Science and Pollution
Research, 20(7): 5028 – 5035.
33.
Nassar,
N. N. and Ringsred, A. (2012). Rapid adsorption of metilena biru from aqueous
solutions by goethite nanoadsorbents.
Environmental Engineering Science,
29(8): 790 – 797.