Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1266 - 1275

DOI: 10.17576/mjas-2017-2106-08

 

 

 

POTENTIOMETRIC STUDY OF RHENIUM(V) COMPLEX FORMATION WITH AZATHIOPRINE AND CEFTRIAXONE

 

(Kajian Potentiometri Penghasilan Kompleks Rhenium(V) dengan Azatioprina dan Ceftriaxon)

 

Gamal Abdelaziz Hussein Gouda 1*, Gomaa Abdelgawad Mohammed Ali 1, 2

 

1Chemistry Department, Faculty of Science,

Al-Azhar University, 71524 Assiut, Egypt

2Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Malaysia

 

*Corresponding author:  ggouda73@mail.ru

 

 

Received: 3 March 2017; Accepted: 17 September 2017

 

 

Abstract

The behavior of complex formation of Re(V) metal ion with azathioprine (AZ) and ceftriaxone (CE) as medicinal drugs has been investigated potentiometrically in 0.3 M hydrochloric acid. The stability constant of the prepared complexes has been determined and calculated at various temperatures. The obtained results showed that Re(V)-AZ system showed the formation 1:2, 1:3 and 1:4 complexes, while Re(V)-CE showed only 1:1 and 1:2 complexes. The complex formation suggests a successive displacement of the chloride molecules from the coordination sphere of the central ion by the AZ ligand. In addition, the effect of temperature on the complexes formation of Re(V) with AZ and CE was investigated. The entropy and enthalpy changes showed a favorable and exothermic process, respectively. The kinetic parameters of the formation complex process were calculated and discussed.

 

Keywords:  rhenium(V), drugs, potentiometry, complex formation, stability constant

 

Abstrak

Tingkah laku penghasilan kompleks ion logam Re(V) dengan azatioprina (AZ) dan ceftriaxon (CE) sebagai ubat – ubatan telah dikaji secara potentiometri dalam 0.3 M asid hidroklorik. Pemalar kestabilan terhadap kompleks yang dihasilkan telah ditentukan dan dikira pada pelbagai tahap suhu. Hasil yang diperoleh menunjukkan bahawa sistem Re(V)-AZ mempamerkan penghasilan kompleks 1:2, 1:3 dan 1:4, sementara Re(V)-CE mempamerkan hanya kompleks 1:1 dan 1:2. Penghasilan kompleks mencadangkan satu anjakan molekul klorida berturut-turut dari lingkungan koordinasi ion tengah oleh ligan AZ. Di samping itu, kesan suhu pada pembentukan kompleks Re(V) dengan AZ dan CE telah dikaji. Perubahan entropi dan entalpi menunjukkan proses yang baik dan eksotermik. Parameter kinetik proses penghasilan kompleks turut dikira dan dibincangkan.

 

Kata kunci:  rhenium(V), ubat, potentiometri, penghasilan kompleks, pemalar kestabilan

 

References

1.       Thomas, G. (2003). Fundamentals of medicinal chemistry. John Wiley & Son Ltd. London, UK.

2.       Mendham, J. (2006). Vogels textbook of quantitative chemical analysis. Pearson Education India.

3.       Kinlen, L. J. (1985). Incidence of cancer in rheumatoid arthritis and other disorders after immunosuppressive treatment. American Journal of Medicine, 78(1): 44 – 49.

4.       Fries, J. F., Bloch, D., Spitz, P. and Mitchell, D. M. (1985). Cancer in rheumatoid arthritis: A prospective long-term study of mortality. American Journal of Medicine, 78(1): 56 – 59.

5.       Kotton, C. N. and Hibberd, P. L. (2009). Travel medicine and the solid organ transplant recipient. American Journal of Transplantation, 9(4): 273 – 281.

6.       Rind, F. M. A., Laghari, M. G. H., Memon, A. H., Mughal, U. R., Almani, F. N., Memon, K. M. Y. and Maheshwari, M. L. (2008). Spectrophotometric determination of ceftriaxone using 4-dimethylaminobenzaldehyde. Pakistan Journal of Analytical & Environmental Chemistry, 9(1): 43 – 48.

7.       Al-Momani, I. F. (2001). Spectrophotometric determination of selected cephalosporins in drug formulations using flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis, 25(5-6): 751 – 757.

8.       Lampros, R., Georgios, P. and Nikolaos, A. (2006). Use of ceftriaxone in patients with severe leptospirosis. International Journal of Antimicrobial Agents, 28(3): 259 – 261.

9.       Hirn, M., Laitinen, M., Pirkkalainen, S. and Vuento, R. (2004). Cefuroxime, rifampicin and pulse lavage in decontamination of allograft bone. Journal of Hospital Infection, 56(3): 198 – 202.

10.    Saranjit, S., Monica, G. and Gupta, R. L. (1991). Complexation behaviour of azathioprine with metal ions. International Journal of Pharmaceutics, 68(1-3): 105 – 110.

11.    Singh, B. N. and Kim, K. H. (2005). Effects of divalent cations on drug encapsulation efficiency of deacylated gellan gum. Journal of Microencapsulation, 22(7): 761 – 771.

12.    Okoronkwo, A. E. and Aminjanov, A. A. (2005). Study of the step wise complexation processes of rhenium(V) and 2-mercapto pyridine in 6 moles/L HBr. Oriental Journal of Chemistry, 21(1): 49 – 57.

13.    Al-Sawaad, H. Z. (2013). Evaluation of the ceftriaxone as corrosion inhibitor for carbon steel alloy in 0.5M of hydrochloric acid. International Journal of Electrochemical Science, 8(3): 3105 – 3120.

14.    Doadrio, A. L., Antonio, M. and Regina, O. (2002). VO2+ and Cu2+ interactions with ceftriaxone and ceftizoxime: HPLC kinetic studies. Journal of the Brazilian Chemical Society, 13(1): 95 – 100.

15.    Gouda, G. A. H. (2014). Stability constants of rhenium (V) metal complexes with selected medicinal drugs. Pyrex Journal of Research in Environmental Studies, 1(2): 6 – 14.

16.    Roberts, N. A. and Robinson, P. A. (1985). Copper chelates of antirheumatic and anti-inflammatory agents: their superoxide dismutase-like activity and stability. British Journal of Rheumatology, 24(2): 128 – 136.

17.    Jezowska-Trzebiatowska, B., Wajda, S. and Baluka, M. (1968). Structure and properties of technetium and rhenium compounds of the type [MeVOX5]2− I. Preparation and magnetic and spectrophotometric study. Journal of Structural Chemistry, 8(3): 456 – 459.

18.    Bjerrum, J. (1941). Metal amine formation in aqueous solution; Hasse P. Son. Copenhagen, Denmark.

19.    Irving, H. M. and Rossotti, H. S. (1954). The calculation of formation curves of metal complexes from pH titration curves in mixed solvents. Journal of the Chemical Society, 1954: 2904 – 2910.

20.    Feiner, A. S. and McEvoy, A. J. (1994). The Nernst equation. Journal of Chemical Education, 71(6): 493 – 494.

21.    Thompson, M. L. and Kateley, L. J. (1999). The Nernst equation: Determination of equilibrium constants for complex ions of silver. Journal of Chemical Education, 76(1): 95 – 96.

22.    Heuron, J. Z. and Gilbert, J. B. (1955). New methods for the calculation of association constants of complex ion systems. Journal of the American Chemical Society, 77(9): 2594 – 2596.

23.    Nair, V. S. K. and Parthasarathy, S. (1971). Studies on metal complexes in aqueous solution-VII: 4-nitro and 4-methyl phthalates of some transition metals. Journal of Inorganic and Nuclear Chemistry, 33(9): 3019 – 3020.

24.    Ives, D. J. G. (1971). Chemical thermodynamics. Macdonald and Co. Ltd., London, UK.

25.    Seaf Elnasr, T. A., Soliman, M. H. and Ayash, M. A. A. (2017). Modified hydroxyapatite adsorbent for removal of iron dissolved in water wells in Sohag, Egypt. Chemistry of Advanced Materials, 2(1): 1 – 13.

26.    Omar, A. A. and Ali, E. A. (2014). Titanium carboxylate complexes stability constants estimated by four graphical methods. International Journal of Basic and Applied Sciences, 3(4): 497 – 503.

27.    Golcu, A., Tumer, M., Demirelli H. and Wheatley, R. A. (2005). Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: synthesis, characterization, properties and biological activity. Inorganica Chimica Acta, 358(6): 1785 – 1797.

28.    Santos, I. G. and Abram, U. (2004). Oxorhenium(V) complexes with thiosemicarbazones. Zeitschrift für Anorganische und Allgemeine Chemie, 630(5): 697 – 700.

29.    David, J. H., Jonathan, M. W., Catriona, A. M., Victor, L. V., Kevin, J. B. and Paul, S. D. (2016). Synthesis of oxorhenium(V) and oxotechnetium(V) complexes that bind to amyloid-β plaques. Inorganic Chemistry, 55(16): 7944 – 7953.

30.    Smith, K. J., Ondracek, A. L., Gruhn, N. E., Lichtenberger, D. L., Fanwick, P. E. and Walton, R. A. (2000). A comparative study of the isomers of ReOCl3(PMe3)2 and ReOCl3(PEt3)2. The isolation and characterization of ReH7(PR3)2 and ReO(OEt)Cl2 (PR3)2 (R= Me or Et) and the photoelectron spectrum of ReH7 (PMe3)2. Inorganica Chimica Acta, 300: 23 – 31.

31.    Xiaoyuan, C., Frank, J. F., John, B. W. and Babich, J. Z. (2000). Exploring oxorhenium ‘3+1’ mixed-ligand complexes carrying the S-benzyl-3-[(2-hydroxyphenyl)methylene]dithiocarbazate [ONS]/monothiol [S] donor set: Synthesis and characterization. Inorganica Chimica Acta, 307(1-2): 154 – 159.

32.    Berthold, N., Hans, P., Francesco, T., Theodosia, M., Peter, L., Hartmut, S. and Chiotellis, E. (2000). Oxorhenium mixed-ligand complexes with the 2,6-dimercaptomethylpyridine ligand. Crystal structure of [2,6-dimercaptomethylpyridinato][p-methoxybenzenethiolato]oxorhenium(V). Inorganica Chimica Acta, 304(1): 26 – 32.

33.    Conner, K. A., Walton, R. A., Wilkinson, G., Gillard, R. D. and McCleverty, J. A. (1987). Comprehensive coordination chemistry. Pergamon, Oxford, UK.

34.    André, G. A., Fernandes, Pedro, M. I. S., Elizeu, S. J., Sebastião, L. S., Alzir, B. A. Abram, U., Ellena, J., Eduardo, C. E. and Victor, D. M. (2008). Rhenium chelate complexes with maltolate or kojate. Polyhedron, 27(13): 2983 – 2989.

35.    Ondracek, A. L., Fanwick, P. E. and Walton, R. A. (1998). The synthesis, characterization and X-ray crystal structures of the fac-cis and mer-trans isomers of ReOCl3(PMe3)2. Inorganica Chimica Acta, 267(1): 123 – 126.

36.    Mowafak, M. M., Abeer, A. T., Ahmed, E. A. and Mohamed, S. M. (2015). Potentiometric and thermodynamic studies for binary and mixed ligand complexes of some transition metal ions with hydrazone and phenylalanine. International Journal of Electrochemical Science, 10(1): 456 – 471.

37.    Jamode, V. S. and Kale, A. S. (2007). Stability constant of transition metal ions complex with1-carboxamido-3,5-diaryl-4-aroylpyrazoles. Asian Journal of Chemistry, 19(1): 787 – 789.

38.    Gouda, G. A. H., Ali, G. A. M. and Seaf-Elnasr, T. A. (2015). Stability studies of selected metal ions chelates with 2-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino) phenol. International Journal of Nanomaterials and Chemistry, 1(2): 39 – 44.

39.    Gouda, G. A. H. and Mahross, M. H. (2016). Potentiometric and quantum chemical studies of some metal complexes with 2-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino) phenol. Global Journal of Multidisciplinary Studies, 5: 164 – 180.

40.    Park, H., Choi, W., Cotton, F. A., Wilkinson, G. and Gaus, P. L. (1995). Basic inorganic chemistry. John Wiley & Sons Inc.

41.    Sharmeli, Y. and Lonibala, R. (2009). Thermodynamics of the complexation of n-(pyridin-2-ylmethylene) isonicotinohydrazide with lighter lanthanides. Journal of Chemical & Engineering Data, 54(1): 28 – 34.

42.    Al-Sarawy, A. A., El-Bindary, A. A.,  El-Sonbati, A. Z. and Mokpel, M. M. (2006). Potentiometric and thermodynamic studies of azosulfonamide drugs. Polish Journal of Chemistry, 80(2): 289 – 295.

43.    Martell, A. E. and Motekaitis, R. J. (1989). Determination and use of stability constants. Wiley-VCH, New York, USA.

 




Previous                    Content                    Next