Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1289 - 1298

DOI: 10.17576/mjas-2017-2106-10

 

 

 

EXTRACTION OF METHYLPARABEN IN COSMETICS USING DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION OF FLOATING ORGANIC DROP COUPLED WITH GAS CHROMATOGRAPHY FLAME IONIZATION DETECTOR

 

(Pengekstrakan Metilparaben dalam Kosmetik Menggunakan Pengekstrakan Mikro

Cecair-Cecair Serakan Berdasarkan Pemejalan Organik Terampai Berganding dengan Kromatografi Gas Pengesan Nyala Pengionan)

 

Dyia Syaleyana Md Shukri*, Nurul Asma Hamedan, Nur Shakirah Hussin, Wan Izhan Nawawi

 

Faculty of Applied Sciences,

Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

 

*Corresponding author:  dyia839@perlis.uitm.edu.my

 

 

Received: 16 August 2016; Accepted: 4 November 2017

 

 

Abstract

A simple and efficient method called dispersive liquid–liquid microextraction based on solidification of floating organic droplets (DLLME-SFO) method coupled with gas chromatography flame ionization detector (GC-FID) was developed for the extraction of methylparaben (MP) in cosmetics. In the optimized DLLME-SFO method, a mixture of n-hexadecane (70 μL) as an extraction solvent and methanol (0.25 mL) as a disperser solvent was rapidly injected into a 5 mL sample solution (pH 6) containing 4 % (w/v) NaCl.  After 4 minutes of centrifugation at 4000 rpm, the mixture was separated into two phases with the fine droplets of n-hexadecane floating at the top of the sample solution. Then, the test tube was placed in an ice bath for cooling and solidification purposes. The solidified extract was transferred into a small vial where it melted and injected into GC-FID system. The DLLME-SFO method gave a good linearity over the concentration range from 0.1 – 8 µg/mL with coefficient of estimation (r2) from 0.9996. The method also provides a low limit of detections (LODs) which is 0.0048 µg/mL. Methylparaben was detected in both samples at the concentration level of 0.06 µg/mL for sample 1 and 0.42 µg/mL for sample 2 respectively.

 

Keywords:    dispersive liquid–liquid microextraction, solidification of floating organic droplets, gas chromatography flame ionization detector, methylparaben, cosmetic

 

Abstrak

Kaedah yang senang dan berkesan iaitu pengekstrakan mikro cecair-cecair serakan berdasarkan pemejalan organik terampai (DLLME-SFO) berganding dengan kromatografi gas dengan dengan pengesan nyala pengionan (GC-FID) telah dihasilkan bagi penentuan metilparaben dalam alatan kosmetik. Dalam kaedah DLLME-SFO yang telah dioptimumkan, campuran n-heksadekana (70 μL) sebagai pelarut pengekstrak dan metanol (0.25 mL) sebagai pelarut penyebar disuntik segera ke dalam 5 mL larutan sampel (pH 6) yang mengandungi 4% (w/v) NaCl. Selepas pengemparan selama 4 min pada 4000 rpm, campuran terpisah kepada dua fasa di mana titisan halus n-heksadekana terapung di atas larutan sampel. Kemudiannya, tabung uji diletakkan di dalam rendaman ais untuk penyejukan dan pemejalan. Ekstrak yang beku dimasukkan ke dalam vial di mana ia mencair dan disuntik ke dalam sistem GC-FID. Kaedah DLLME-SFO memberikan kelinearan yang baik untuk kepekatan diantara, 0.1 – 8 μg/mL dengan pekali penentuan (r2) 0.9996. Kaedah ini juga menunjukkan had pengesanan (LODs) rendah iaitu 0.0048 μg/mL. Metilparaben telah dikesan dalam kedua-dua sampel pada tahap kepekatan 0.06 μg/mL untuk sampel 1 dan 0.42 μg/mL untuk sampel 2.

 

Katakunci:   pengekstrakan mikro cecair-cecair serakan, pemejalan organik terampai, gas kromatografi pengesan pengionan nyala, metilparaben, kosmetik

 

References

1.       Kang, S. H. and Kim, H. (1997). Simultaneous determination of methylparaben, propylparaben and thimerosal by high-performance liquid chromatography and electrochemical detection. Journal of Pharmaceutical and Biomedical Analysis, 15: 1359 – 1364.

2.       Reisch, M. S. (2005). Keeping well-preserved: Cosmetic preservatives makers offer alternatives as widely used parabens come under scrutiny. Chemical Engineering News, 25 – 26.

3.       Hirose, M., Tanaka, Y., Tamano, H., Tamano, S., Kato, T. and Shirai, T. (1998). Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis, 19: 207 – 212.

4.       Soni, M. G., Burdock, G. A., Taylor, S. L. and Greenberg, N. A. (2002). Evaluation of the health aspects of methylparaben: A review of the published literature. Food Chemical Toxicology. 40: 1335 – 1373.

5.       Alshana, U., Ertas, N. and Goger, N. G. (2015). Determination of parabens in human milk and other food samples by capillary electrophoresis after dispersive liquid-liquid microextraction with back-extraction. Food Chemistry, 181: 1 8.

6.       Darbre, P. D., Aljarrah, A., Miller, W. R., Coldham, N. G., Sauer, M. J. and Pope, G. S. (2004). Concentrations of parabens in human breast tumours. Journal of Applied Toxicology, 24 (1): 5 13.

7.       Canosa, P., Rodriguez, I., Rubi, E., Bollain, M. H. and Cela, R. (2006). Optimization of a solid-phase microextraction method for the determination of parabens in water samples at low ng per litre level. Journal of Chromatography A, 1124 (1-2): 3 – 10.

8.       Darbre, P. D. and Harvey, P. W. (2008). Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. Journal of Applied Toxicology, 28: 561 – 78.

9.       Routledge, E. J., Parker, J., Odum, J., Ashby, J. and Sumpter, J. P. (1998). Some alkyl hydroxy benzoate preservatives (parabens) are estrogenic. Toxicology and Applied Pharmacology, 153: 12 – 19.

10.    Cabaleiro, N., Calle, I., Bendicho, C. and Lavilla, I. (2014). An overview of sample preparation for the determination of parabens in cosmetics. Trends in Analytical Chemistry, 57: 34 – 46.

11.    Salvador, A. and Chisvert, A. (2007). Analysis of cosmetic products, Elsevier, Netherlands.

12.    Wang, P. and Liu, Y. (2007). Cosmetic preservatives and analysis methods used in China. Journal of Environmental Health, 24: 557 – 559.

13.    Cabaleiro, N., Calle, I., Bendicho, C. and Lavilla, I. (2013). Current trends in liquid-liquid and solid-liquid extraction for cosmetic analysis: A review. Analytical Methods, 5: 323 – 340.

14.    Cabaleiro, N., Calle, I., Bendicho, C. and Lavilla, I. (2013). Solid phase extraction and solid-phase microextraction in cosmetic analysis: A review. Science Letter Journal, 2: 1 – 21.

15.    Malika, J. N. N., Thiruveengadarajan, V. S. and Gopinath, C. (2013). A review on various analytical method developments for the identification of methyl paraben present in cosmetics. International Journal of Review in Life Sciences, 3: 5 – 19.

16.    Rezaee, M., Assadi, Y., Milani M. R., Hosseini, E., Aghaee, F., Ahmadi, S. and Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116: 1 – 9.

17.    Berijani, S., Assaddi, Y., Anbia. M., Milani, M. R., Hosseini, E. and Aghaee, F. (2006). Dispersive liquid-liquid microextraction combines with gas chromatography-flame photometric detection. very simple, rapid, and sensitive method for the determination of organophosphorus pesticides in water. Journal of Chromatography A, 1123: 1 – 9.

18.    Leong, M. I. and Huang, S. D. (2008). Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron capture or mass spectrometry detection. Journal of Chromatography A, 1211: 8 – 12.

19.    Juybari, M. B., Mehdinia, A., Jabbari, A. and Yamini, Y. (2011). Dispersive liquid-liquid microextraction based on solidification of floating organic drop followed by gas chromatography-electron capture detector for determination of some pesticides in water samples. Chromatography Research International, 2011: 1 – 8.

20.    Jamali, M. R., Rahimpour, S. and Rahnama, R. (2012). Determination of cobalt in natural water samples after separation and preconcentration by dispersive liquid-liquid microextraction based on the solidification of floating organic drop. Applied Chemistry, 23: 21 – 27.

21.    Toraj, A-J., Nazir, F. and Mojtaba, S. (2014). Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 94: 145 – 151.

22.    Vinas, P., Campillo, N. and Andruch, V. (2015). Recent achievements in solidified organic drop extraction. Trends in Analytical Chemistry, 68: 48 – 77.

23.    Sanagi, M. M., Abbas, H. H., Ibrahim, W. A. W. and Aboul-Enien, H. Y. (2012). Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chemistry, 133: 557 – 562.

 




Previous                    Content                    Next