Malaysian Journal of Analytical
Sciences Vol 21 No 6 (2017): 1210 - 1218
DOI:
10.17576/mjas-2017-2106-01
FLUORESCENCE AND EVAPORATIVE
LIGHT SCATTERING HPLC PROFILING OF INTRACELLULAR ASPARAGINE (N)-LINKED OLIGOSACCHARIDES FROM Saccharomyces cerevisiae USING alg8 MUTANT
(Pemprofilan KCPT Pendarfluor dan Penyerakan Cahaya
Sejatan Oligosakarida Terpaut-(N)
Asparagina Intrasel daripada Saccharomyces
cerevisiae Menggunakan Mutan alg8)
Dominic S. Alonzi5, Mukram Mohamed
Mackeen1,2*
1School of Chemical Sciences and Food Technology
2Institute of Systems Biology (INBIOSIS)
3School of Biosciences and Biotechnology, Faculty of
Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
4Malaysia Genome Institute,
Jalan Bangi, 43000 Kajang, Selangor, Malaysia
5Oxford Glycobiology Institute,
University
of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
*Corresponding author:
mukram.mackeen@ukm.edu.my
Received: 21
June 2017; Accepted: 30 September 2017
Abstract
N-glycans are biologically
important oligosaccharides associated with the asparagine residue that may
exist in protein-bound or unbound forms in all eukaryotes (including yeasts)
and some bacteria. The- core structure
of these oligosaccharides is based on the trimannosyl chitobiose structure
resulting from cellular N-glycosylation.
Preparative-scale amounts of these oligosaccharides are important for chemical,
structural and functional studies due to their biological significance. Therefore,
we explored a biochemical approach of oligosaccharide preparation using mutant-derived
monoglucosylated lipid-linked oligosaccharides (LLOs) required for the assembly
of N-linked glycoproteins and
non-monoglucosylated free-oligosaccharides (fOSs) from misfolded N-linked glycoproteins using an N-glycosylation (alg) mutant of Saccharomyces
cerevisiae. Oligosaccharide extracts of fOSs and LLOs from the alg8 S. cerevisiae mutant lacking the ALG8 gene were profiled using
fluorescence- and evaporative light scattering-based HPLC. LLOs did not produce
accumulated levels of the target mutant- related monoglucosylated (Glc1Man9GlcNAc2)
at 100 ml scale. However, it was
possible to detect truncated oligomannose (paucimannose) structures in the fOSs
of the alg8 mutant.
Keywords: N-linked glycosylation, N-glycans,
Free oligosaccharides, Lipid-linked oligosaccharides, Saccharomyces cerevisiae
Abstrak
N-glikan merupakan oligosakarida yang penting dalam biologi
yang bersekutu dengan residu asparagina yang hadir dalam keadaan terikat atau
tidak terikat kepada protein dalam semua eukariot (termasuk yis) dan sesetengah
bakteria. Struktur asas oligosakarida ini adalah berdasarkan struktur
kitobiose trimanosa yang terhasil melalui pengglikosilan-N. Oligosakarida ini penting untuk kajian kimia, struktur dan
fungsi disebabkan kepentingan biologinya. Oleh itu, kami telah mengkaji kaedah
penyediaan oligosakarida dengan pendekatan biokimia menggunakan yis mutan (alg) Saccharomyces
cerevisiae yang menghasilkan monoglukosa oligosakarida terpaut-lipid (LLO)
yang diperlukan dalam pengumpulan glikoprotein terpaut-N dan bukan-monoglukosa oligosakarida bebas (fOS) daripada
glikoprotein terpaut-N silap lipatan.
Ekstrak oligosakarida fOS dan LLO daripada mutan alg8 S. cerevisiae tanpa gen ALG8
telah diprofil menggunakan KCPT-pendarfluor dan pengesan penyerakan
cahaya sejatan. LLO didapati tidak
menghasilkan sebatian sasaran monoglukosa (Glc1Man9GlcNAc2)
berkaitan-mutan pada skala 100 ml. Walau
bagaimanapun, struktur fOS oligomanosa terpangkas (pausimanosa) boleh dikesan
daripada mutan alg8.
Kata kunci: pengglikosilan terpaut-N, N-glikan,
Oligosakarida bebas, Oligosakarida terpaut-lipid, Saccharomyces cerevisiae
References
1.
Aebi, M. (2013). N-linked protein glycosylation in the
ER. Biochimica et Biophysica Acta - Molecular
Cell Research, 1833: 2430 – 2437.
2.
Cheon, Y. and Kim, C. (2015). Impact of glycosylation on the
unimpaired functions of the sperm. Clinical
and Experimental Reproductive Medicine, 42: 77 – 85.
3.
Ferris, S. P., Kodali, V. K. and Kaufman, R. J. (2014).
Glycoprotein folding and quality-control mechanisms in protein-folding
diseases. Disease Models & Mechanisms,
7: 331 – 341.
4.
Xu, C. and Ng D. T. W. (2015). Glycosylation-directed quality
control of protein folding. Nature
Reviews Molecular Cell Biology, 16: 742 – 752.
5.
Runge, K. W. and Robbins, P. W. (1986). A new yeast mutation
in the glucosylation steps of the asparagine-linked glycosylation pathway.
Formation of a novel asparagine-linked oligosaccharide containing two glucose
residues. Journal of Biological
Chemistry, 261: 15582 – 15590.
6.
Mackeen, M. M., Almond, A., Deschamps, M., Cumpstey, I.,
Fairbanks, A. J., Tsang, C., Rudd, P. M., Butters, T. D., Dwek, R. A. and
Wormald, M. R. (2009). The conformational properties of the Glc3Man unit
suggest conformational biasing within the chaperone-assisted glycoprotein
folding pathway. Journal of Molecular
Biology, 387: 335 – 347.
7.
Lundborg, M. and Widmalm, G. (2011). Structural analysis of
glycans by NMR chemical shift prediction. Analytical
Chemistry, 83: 1514 – 1517.
8.
Zhang, X. and Zhang, Y. (2013). Applications of azide-based
bioorthogonal click chemistry in glycobiology. Molecules, 18: 7145 – 7159.
9.
Kelleher, D. J., Karaoglu, D. and Gilmore, R. (2001).
Large-scale isolation of dolichol-linked oligosaccharides with homogeneous
oligosaccharide structures: Determination of steady-state dolichol-linked
oligosaccharide compositions. Glycobiology,
11: 321 – 333.
10.
Verostek, M. F., Lubowski, C. and Trimble, R. B. (2000).
Selective organic precipitation/extraction of released N-glycans following large-scale enzymatic deglycosylation of
glycoproteins. Analytical Biochemistry,
278: 111 – 122.
11.
Roth, Z., Yehezkel, G. and Khalaila, I. (2012).
Identification and quantification of protein glycosylation. International Journal of Carbohydrate
Chemistry, 2012: 1 – 10.
12.
Gao, N. (2005). Fluorophore-assisted carbohydrate
electrophoresis: a sensitive and accurate method for the direct analysis of
dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues. Methods, 35: 323 – 327.
13.
Chantret, I., Kodali, V. P., Lahmouich, C., Harvey, D. J. and
Moore, S. E. H. (2011). Endoplasmic reticulum-associated degradation (ERAD) and
free oligosaccharide generation in Saccharomyces
cerevisiae. Journal of Biological
Chemistry, 286: 41786 – 41800.
14.
Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura,
S. I. and Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid
method in microplate format. Analytical
Biochemistry, 339: 69 – 72.
15.
Neville, D. C. A., Coquard, V., Priestman, D. A., te Vruchte,
D. J. M., Sillence, D. J., Dwek, R. A., Platt, F. M. and Butters, T. D. (2004).
Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides
following ceramide glycanase digestion and anthranilic acid labeling. Analytical Biochemistry, 331: 275 – 282.
16.
Gray, J. V., Petsko, G. A., Johnston, G. C., Ringe, D.,
Singer, R. A. and Werner-Washburne, M. (2004).
Sleeping beauty: quiescence in Saccharomyces
cerevisiae. Microbiology and
Molecular Biology Reviews, 68: 187 – 206.
17.
Hossain, T. J., Harada, Y., Hirayama, H., Tomotake, H., Seko,
A. and Suzuki, T. (2016). Structural analysis of free N-glycans in α-glucosidase mutants of Saccharomyces cerevisiae: Lack of the evidence for the occurrence
of catabolic α-glucosidase acting on the N-glycans.
PLoS One,
11: e0151891.
18.
Hirayama,
H., Seino, J., Kitajima, T., Jigami, Y. and Suzuki, T. (2010). Free oligosaccharides to monitor
glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. Journal of Biological Chemistry,
285: 12390 – 12404.
19.
Alonzi, D. S., Neville, D. C. A., Lachmann, R. H., Dwek, R.
A. and Butters, T. D. (2008). Glucosylated free oligosaccharides are biomarkers
of endoplasmic-reticulum alpha-glucosidase inhibition. Biochemical Journal, 409: 571 – 580.
20.
Guile, G. R., Rudd, P. M., Wing, D. R., Prime, S. B. and
Dwek, R. A (1996). A rapid high-resolution high-performance liquid
chromatographic method for separating glycan mixtures and analyzing
oligosaccharide profiles. Analytical
Biochemistry, 240: 210 – 226.
21.
Murakami, S., Takaoka, Y., Ashida, H., Yamamoto, K.,
Narimatsu, H. and Chiba, Y. (2013). Identification and characterization of
endo-β-N-acetylglucosaminidase from
methylotrophic yeast Ogataea minuta. Glycobiology, 23: 736 – 744.