Malaysian Journal of Analytical Sciences Vol 21 No 6 (2017): 1210 - 1218

DOI: 10.17576/mjas-2017-2106-01

 

 

 

FLUORESCENCE AND EVAPORATIVE LIGHT SCATTERING HPLC PROFILING OF INTRACELLULAR ASPARAGINE (N)-LINKED OLIGOSACCHARIDES FROM Saccharomyces cerevisiae USING alg8 MUTANT

 

(Pemprofilan KCPT Pendarfluor dan Penyerakan Cahaya Sejatan Oligosakarida Terpaut-(N) Asparagina Intrasel daripada Saccharomyces cerevisiae Menggunakan Mutan alg8)

 

Iqbal Jalaludin1, Amirul Husna Sudin1, Ikram Mohd Said1,2, Kamalrul Azlan Azizan2, Syarul Nataqain Baharum2, Abdul Munir Abdul Murad3, Farah Diba Abu Bakar3, Nor Muhammad Mahadi4, Mark R. Wormald5,

Dominic S. Alonzi5, Mukram Mohamed Mackeen1,2*

 

1School of Chemical Sciences and Food Technology

2Institute of Systems Biology (INBIOSIS)

3School of Biosciences and Biotechnology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

4Malaysia Genome Institute,

 Jalan Bangi, 43000 Kajang, Selangor, Malaysia

5Oxford Glycobiology Institute,

University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom

 

*Corresponding author:  mukram.mackeen@ukm.edu.my

 

 

Received: 21 June 2017; Accepted: 30 September 2017

 

 

Abstract

N-glycans are biologically important oligosaccharides associated with the asparagine residue that may exist in protein-bound or unbound forms in all eukaryotes (including yeasts) and some bacteria.  The- core structure of these oligosaccharides is based on the trimannosyl chitobiose structure resulting from cellular N-glycosylation. Preparative-scale amounts of these oligosaccharides are important for chemical, structural and functional studies due to their biological significance. Therefore, we explored a biochemical approach of oligosaccharide preparation using mutant-derived monoglucosylated lipid-linked oligosaccharides (LLOs) required for the assembly of N-linked glycoproteins and non-monoglucosylated free-oligosaccharides (fOSs) from misfolded N-linked glycoproteins using an N-glycosylation (alg) mutant of Saccharomyces cerevisiae. Oligosaccharide extracts of fOSs and LLOs from the alg8 S. cerevisiae mutant lacking the ALG8 gene were profiled using fluorescence- and evaporative light scattering-based HPLC. LLOs did not produce accumulated levels of the target mutant- related monoglucosylated (Glc1Man9GlcNAc2) at 100 ml scale.  However, it was possible to detect truncated oligomannose (paucimannose) structures in the fOSs of the alg8 mutant.

 

Keywords:  N-linked glycosylation, N-glycans, Free oligosaccharides, Lipid-linked oligosaccharides, Saccharomyces cerevisiae

 

Abstrak

N-glikan merupakan oligosakarida yang penting dalam biologi yang bersekutu dengan residu asparagina yang hadir dalam keadaan terikat atau tidak terikat kepada protein dalam semua eukariot (termasuk yis) dan sesetengah bakteria. Struktur asas oligosakarida ini adalah berdasarkan struktur kitobiose trimanosa yang terhasil melalui pengglikosilan-N. Oligosakarida ini penting untuk kajian kimia, struktur dan fungsi disebabkan kepentingan biologinya. Oleh itu, kami telah mengkaji kaedah penyediaan oligosakarida dengan pendekatan biokimia menggunakan yis mutan (alg) Saccharomyces cerevisiae yang menghasilkan monoglukosa oligosakarida terpaut-lipid (LLO) yang diperlukan dalam pengumpulan glikoprotein terpaut-N dan bukan-monoglukosa oligosakarida bebas (fOS) daripada glikoprotein terpaut-N silap lipatan. Ekstrak oligosakarida fOS dan LLO daripada mutan alg8 S. cerevisiae tanpa gen ALG8 telah diprofil menggunakan KCPT-pendarfluor dan pengesan  penyerakan  cahaya  sejatan. LLO didapati tidak menghasilkan sebatian sasaran monoglukosa (Glc1Man9GlcNAc2) berkaitan-mutan pada skala 100 ml. Walau bagaimanapun, struktur fOS oligomanosa terpangkas (pausimanosa) boleh dikesan daripada mutan alg8.

 

Kata kunci:    pengglikosilan terpaut-N, N-glikan, Oligosakarida bebas, Oligosakarida terpaut-lipid, Saccharomyces cerevisiae

 

References

1.       Aebi, M. (2013). N-linked protein glycosylation in the ER. Biochimica et Biophysica Acta - Molecular Cell Research, 1833: 2430 – 2437.

2.       Cheon, Y. and Kim, C. (2015). Impact of glycosylation on the unimpaired functions of the sperm. Clinical and Experimental Reproductive Medicine, 42: 77 – 85.

3.       Ferris, S. P., Kodali, V. K. and Kaufman, R. J. (2014). Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Disease Models & Mechanisms, 7: 331 – 341.

4.       Xu, C. and Ng D. T. W. (2015). Glycosylation-directed quality control of protein folding. Nature Reviews Molecular Cell Biology, 16: 742 – 752.

5.       Runge, K. W. and Robbins, P. W. (1986). A new yeast mutation in the glucosylation steps of the asparagine-linked glycosylation pathway. Formation of a novel asparagine-linked oligosaccharide containing two glucose residues. Journal of Biological Chemistry, 261: 15582 – 15590.

6.       Mackeen, M. M., Almond, A., Deschamps, M., Cumpstey, I., Fairbanks, A. J., Tsang, C., Rudd, P. M., Butters, T. D., Dwek, R. A. and Wormald, M. R. (2009). The conformational properties of the Glc3Man unit suggest conformational biasing within the chaperone-assisted glycoprotein folding pathway. Journal of Molecular Biology, 387: 335 – 347.

7.       Lundborg, M. and Widmalm, G. (2011). Structural analysis of glycans by NMR chemical shift prediction. Analytical Chemistry, 83: 1514 – 1517.

8.       Zhang, X. and Zhang, Y. (2013). Applications of azide-based bioorthogonal click chemistry in glycobiology. Molecules, 18: 7145 – 7159.

9.       Kelleher, D. J., Karaoglu, D. and Gilmore, R. (2001). Large-scale isolation of dolichol-linked oligosaccharides with homogeneous oligosaccharide structures: Determination of steady-state dolichol-linked oligosaccharide compositions. Glycobiology, 11: 321 – 333.

10.    Verostek, M. F., Lubowski, C. and Trimble, R. B. (2000). Selective organic precipitation/extraction of released N-glycans following large-scale enzymatic deglycosylation of glycoproteins. Analytical Biochemistry, 278: 111 – 122.

11.    Roth, Z., Yehezkel, G. and Khalaila, I. (2012). Identification and quantification of protein glycosylation. International Journal of Carbohydrate Chemistry, 2012: 1 – 10.

12.    Gao, N. (2005). Fluorophore-assisted carbohydrate electrophoresis: a sensitive and accurate method for the direct analysis of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues. Methods, 35: 323 – 327.

13.    Chantret, I., Kodali, V. P., Lahmouich, C., Harvey, D. J. and Moore, S. E. H. (2011). Endoplasmic reticulum-associated degradation (ERAD) and free oligosaccharide generation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 286: 41786 – 41800.

14.    Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I. and Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 339: 69 – 72.

15.    Neville, D. C. A., Coquard, V., Priestman, D. A., te Vruchte, D. J. M., Sillence, D. J., Dwek, R. A., Platt, F. M. and Butters, T. D. (2004). Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Analytical Biochemistry, 331: 275 – 282.

16.    Gray, J. V., Petsko, G. A., Johnston, G. C., Ringe, D., Singer, R. A. and Werner-Washburne, M. (2004).  Sleeping beauty: quiescence in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 68: 187 – 206.

17.    Hossain, T. J., Harada, Y., Hirayama, H., Tomotake, H., Seko, A. and Suzuki, T. (2016). Structural analysis of free N-glycans in α-glucosidase mutants of Saccharomyces cerevisiae: Lack of the evidence for the occurrence of catabolic α-glucosidase acting on the N-glycans. PLoS One, 11: e0151891.

18.    Hirayama, H., Seino, J., Kitajima, T., Jigami, Y. and Suzuki, T. (2010). Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces cerevisiae. Journal of Biological Chemistry, 285: 12390 – 12404.

19.    Alonzi, D. S., Neville, D. C. A., Lachmann, R. H., Dwek, R. A. and Butters, T. D. (2008). Glucosylated free oligosaccharides are biomarkers of endoplasmic-reticulum alpha-glucosidase inhibition. Biochemical Journal, 409: 571 – 580.

20.    Guile, G. R., Rudd, P. M., Wing, D. R., Prime, S. B. and Dwek, R. A (1996). A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Analytical Biochemistry, 240: 210 – 226.

21.    Murakami, S., Takaoka, Y., Ashida, H., Yamamoto, K., Narimatsu, H. and Chiba, Y. (2013). Identification and characterization of endo-β-N-acetylglucosaminidase from methylotrophic yeast Ogataea minuta. Glycobiology, 23: 736 – 744.

 

 




Previous                    Content                    Next