Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1134 - 1142

DOI: https://doi.org/10.17576/mjas-2017-2105-16

 

 

 

INFRA-RED INVESTIGATION ON SILICON SOLAR CELLS

 

(Kajian Inframerah ke atas Sel-sel Suria Silikon)

 

Nurfarizza Surhada Mohd Nasir, Suhaila Sepeai*, Cheow Siu Leong, Kamaruzzaman Sopian, Saleem H.Zaidi

 

Solar Energy Research Institute (SERI)

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  suhailas@ukm.edu.my

 

 

Received: 12 April 2017; Accepted: 1 September 2017

 

 

Abstract

Increasing reliance on carbon-based fossil fuel is likely to cause irreversible damage to global environment. Crystalline silicon (Si) based on pollution free photovoltaic (PV) electricity generation technology is expected to play a dominant role in this electricity generation transition from carbon to silicon. Since Si wafer represents almost 50% of the PV conversion cost, thinner wafers are highly effective at reducing the production cost. Therefore, there is an urgent need to develop alternative device configurations and processing methods for thinner Si wafer. Si wafer has to go through cleaning process, thinning process, textured process and partially transparent technique. In this work optical transmission through Si is investigated as a function of wafer thickness. For this improved performance, surface morphology, optical properties and the optical transmission near band gap is measured with custom-designed rear infra-red (IR) transmission measurement system. Si wafer with the textured surface have more light absorption than the as-cut and planar Si wafer.

 

Keywords:  optical transmission, thin silicon wafers, infrared light, light absorption

 

Abstrak

Peningkatan kebergantungan terhadap penggunaan bahan bakar berasaskan sumber karbon mengakibatkan pencemaran alam sekitar. Fotovolta (PV) sifar pencemaran berasaskan silikon kristal merupakan teknologi tenaga elektrik generasi terkini dijangkakan menjadi sumber yang mendominasi perubahan sumber bahan api berasaskan karbon kepada silikon. Tambahan pula, kepingan silikon meliputi 50% kos keseluruhan pembuatan PV, pengurangan kos yang efektif didapati melalui penipisan kepingan.. Oleh itu, kaedah alternatif kepada pembaharuan bagi konfigurasi sistem penipisan silikon harus di cadangan. Kepingan silikon harus melalui proses pembersihan, proses penipisan, proses tekstur dan teknik separa telus. Dalam kajian hubungan di antara ketebalan kepingan silicon dan maklumat optik diteliti. Bagi meningkatkan prestasi, morfologi permukaan, sifat optik, dan penghantaran optik menghampiri jurang jalur diukur dengan menggunakan sistem pengukuran penghantaran gelombang IR.

 

Kata kunci:  penghantaran optik, kepingan silikon nipis, cahaya inframerah, penyerapan cahaya

 

References

1.       Maycock, P., (2003). PV market update. Renewable Energy World, 6(4): 84.

2.       Munzer, K. A.,  Holdermann, K. T.,  Schlosser, R. E. and  Sterk, S. (1999).  Thin monocrystalline silicon solar cells. IEEE Transactions on Electron Devices, 46(10): 2055 – 2061.

3.       Tiedje, T., Yablonovitch, E., Cody, G. D. and Brooks, B. G. (1984).  Limiting  efficiency  of silicon solar cells. IEEE Transactions on electron devices, 31(5): 711 – 716.

4.       Cuevas, A. (1999). The effect of emitter recombination on the effective lifetime of silicon wafers. Solar Energy Materials and Solar Cells, 57(3): 277 – 290.

5.       Pan, A. C., Del Caρizo, C. and Luque, A. (2009).  Characterization  of  up-converter  layers  on bifacial silicon solar cells. Materials Science and Engineering: B, 159: 212 – 215.

6.       Frank, J., Rόdiger, M., Fischer, S., Goldschmidt, J. C. and Hermle, M. (2012).  Optical  simulation  of  bifacial solar cells. Energy Procedia, 27: 300 – 305.

7.       Yamamoto, K., Yoshimi, M., Suzuki, T., Nakata, T., Sawada, T., Nakajima, A. and Hayashi, K. (2000). Large-area and high efficiency a-Si/poly-Si stacked solar cell submodule. In Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE: pp. 1428 – 1432.

8.       Hebling, C., Glunz, S. W.,  Schumacher, J. O. and Knobloch, J. (1997).  High  efficiency (19.2%)  silicon  thin-film solar cells with interdigitated emitter and base front-contacts. In 14th European Photovoltaic Solar Energy Conference, 2318.

9.       Yamamoto,  K. (1999).  Very  thin  film  crystalline  silicon  solar  cells  on  glass  substrate  fabricated  at  low temperature. IEEE Transactions on Electron Devices, 46(10): 2041 – 2047.

10.    Miles, R. W., Zoppi, G. and Forbes, I. (2007). Inorganic photovoltaic cells. Materials Today, 10(11): 20 – 27.

11.    Green, M. A. (1995). Silicon Solar Cells: Advanced Principles and Practice. Bridge Printery, Sydney.

12.    Green,  M. A. and Keevers,  M. J. (1995).  Optical  properties  of  intrinsic silicon at 300 K. Progress in Photo-voltaics: Research and Applications, 3(3): 189 – 192.

13.    Craighead, H. G., Howard, R. E. and Tennant, D. M. (1980).  Textured  thinfilm  Si  solar  selective absorbers using reactive ion etching. Applied Physics Letters, 37(7): 653 – 655.

14.    Southwell, W. H. (1983). Gradient-index antireflection coatings. Optics Letters, 8(11): 584 – 586.

15.    Heine, C. and Morf, R. H. (1995).  Submicrometer  gratings  for  solar  energy  applications. Applied Optics, 34(14): 2476 – 2482.

16.    Azhari,  A. W.,  Goh, B. T.,  Sepeai, S.,  Khairunaz,  M.,  Sopian, K.  and  Zaidi,  S. H. (2013).   Synthesis and characterization  of  self-assembled,  high  aspect  ratio nm-scale  columnar  silicon structures. In Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th: pp. 0530 – 0534.

17.    Yablonovitch, E. (1982). Statistical ray optics. Journal of the Optical Society of America, 72(7): 899 –907.

18.    Sheng, P. (1984).  Optical  absorption  of  thin film  on a Lambertian reflector substrate. IEEE Transactions on Electron Devices, 31(5): 634 – 636.

19.    Zaidi,  S. H.,  Ruby, D. S., DeZetter, K.  and  Gee, J. M. (2002).  Enhanced  near IR absorption in random, RIE-textured  silicon  solar  cells:  The  role of  surface  profiles.   In  Photovoltaic  Specialists  Conference,  2002. Conference Record of the Twenty-Ninth IEEE: pp. 142 – 145.

20.    Zaidi, S. H. and Brueck, S. R. (1997). Si texturing with sub-wavelength structures.  In Proceedings of the 1997 IEEE 26th Photovoltaic Specialists Conference. IEEE: pp. 171 – 174.

21.    Zaidi, S. H., Gee, J. M. and Ruby, D. S. Ruby (2000).  Plama  texturing  for  multicystalline  Si  solar  cells. In Proceedings of the 2000. Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists: pp. 75 – 78.

22.    Zaidi,  S. H.,  Matzke, C., Koltunski, L.  and  DeZetter, K. (2005).  Absorption  in  thin Si films with randomly formed  subwavelength  structures.  In Photovoltaic  Specialists  Conference, 2005.  Conference Record of the Thirty-first IEEE: pp. 1145 – 1148.

23.    Jahanshah,  F.,  Prinja, R.,  Anderson, J.,  Manginell, R.,  Amin, N.,  Sopian, K.  and  Zaidi,  S. H.  (2008).   An investigation  of  three-dimensional  texturing  in  silicon  solar cells for enhanced optical absorption. In Photo-voltaic Specialists Conference, 2008. 33rd IEEE: pp. 1 – 5.

24.    Zaidi, S. H., Marquadt, R., Minhas, B. and Tringe, J. W. (2002). Deeply etched grating structures for enhanced absorption  in thin c-Si solar cells.  In Photovoltaic  Specialists Conference, 2002.  Conference  Record  of  the Twenty-Ninth IEEE: pp. 1290 – 1293.

25.    Zaidi, S. H., Ruby, D. S. and Gee, J. M. (2001). Characterization of random reactive ion etched-textured silicon solar cells. IEEE Transactions on Electron Devices, 48(6): 1200 – 1206.

26.    Sandoval, S. G., Khizar, M., Modisette, D., Anderson, J., Manginell, R., Amin, N., Sopian, K. and  Zaidi, S. H. (2010).   Optical  absorption  in  microstructured  crystalline  silicon  thin  films.   In  Photovoltaic  Specialists Conference (PVSC), 2010 35th IEEE: pp. 001597 – 001600.

27.    Azhari,  A. W.,  Goh,  B. T.,  Sepeai, S.,  Khairunaz, M.,  Sopian, K.  and  Zaidi, S. H.  (2013).  Synthesis  and characterization  of  self-assembled,  high  aspect ratio  nm-scale  columnar  silicon structures. In Photovoltaic Specialists Conference, 2013 IEEE 39th: pp. 0530 – 0534.

28.    Deckman, H. W.,  Wronski, C. R.,  Witzke, H. and  Yablonovitch, E. (1983).  Optically  enhanced  amorphous silicon solar cells. Applied Physics Letters, 42(11): 968 – 970.

29.    Campbell, P. and Green, M. A. (1987).  Light  trapping properties of pyramidally textured surfaces. Journal of Applied Physics, 62(1): 243 – 249.

30.    Goetzbeger, A. (1981): Optical confinement in thin Si solar celss by diffuse back reflectors.  Proceeding of the 15th IEEE Photovoltaic Specialist Conference: pp. 867 – 870.

31.    Zubel, I. and Kramkowska, M. (2001). The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions. Sensors and Actuators A: Physical, 93(2): 138 – 147.

 




Previous                    Content                    Next