Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1127 - 1133

DOI: https://doi.org/10.17576/mjas-2017-2105-15

 

 

 

PERFORMANCE ANALYSIS OF SIMPLIFIED SILICON SOLAR CELL ON P-TYPE CRYSTALLINE SILICON WAFER

 

(Analisis Prestasi Bagi Sel Suria Silikon Teringkas Ke Atas Silikon Wafer Kristal Jenis-P)

 

Wan Zulhafizhazuan*, Suhaila Sepeai, Cheow Siu Leong, Kamaruzzaman Sopian , Saleem H. Zaidi

 

Solar Energy Research Institute (SERI),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  wanzulhafizhazuan@gmail.com

 

 

Received: 12 April 2017; Accepted: 1 September 2017

 

 

Abstract

Crystalline silicon (c-Si) wafers are the dominating substrate materials for solar cells in current photovoltaic (PV) industry. Silicon (Si) wafer with positive-type (p-type) based solar cells dominates almost 95% of the global PV market. Recent goal in Si solar cell industry is focusing on cost reduction through inexpensive manufacturing processes. Standard manufacturing process of Si solar cell fabrication consist of damage removal, cleaning, texturing, phosphorus oxytrichloride (POCl3) diffusion, anti-reflective coating (ARC) deposition, metallization by screen printing technique, firing and light current-voltage (LIV) testing. These fabrications line are time–consuming and high temperature process which lead to high manufacturing cost.  This study presents the simplification of Si solar cell fabrication on p-type Si wafer. Simplified fabrication process eliminates the ARC deposition by plasma enhanced chemical vapour deposition (PECVD). Simplified Si solar cell was fabricated without silicon nitride (SiN) as ARC layer. In commercial solar cell, both pyramid texture on Si wafer and SiN have been used to reduce reflectance and enhanced the light absorption. From the reflectance measurement, it can be seen that SiN and pyramid texture shows an average reflectance curve. The efficiency obtained by commercial, fabricated and simulated solar cells were 17.09%, 9.44% and 9.67%, respectively. From the simulation study, it is proven that the low efficiency of simplified solar cell was attributed by low minority carrier lifetime of p-type Si wafer.

 

Keywords:  crystalline silicon solar cell, p-type Si wafer, anti-reflective coating, minority carrier life time, PC1D simulation

 

Abstrak

Kepingan silikon kristal (c-Si) adalah bahan substrat yang mendominasi sel suria untuk industri fotovolta (PV) masa kini. Sel suria berasaskan kepingan silikon (Si) berjenis-p menguasai hampir 95% daripada pasaran PV global. Matlamat terkini dalam industri sel suria Si memfokuskan kepada pengurangan kos melalui proses pembuatan yang murah. Piawai pembuatan fabrikasi sel suria Si terdiri daripada penyingkiran kotoran, pembersihan, penteksturan, penyerapan fosforus oksitriklorida (POCl3), pemendapan lapisan anti-pantulan (ARC), penyaduran dengan teknik percetakan skrin, pembakaran dan ujian cahaya arus-voltan (LIV). Proses fabrikasi piawai ini memakan masa dan menggunakan suhu tinggi yang menyebabkan kos pengeluaran yang tinggi. Kajian ini membentangkan peringkasan proses fabrikasi sel suria Si di atas Si wafer jenis-p. Proses fabrikasi teringkas ini membuang proses pemendapan ARC oleh pengendapan kimia dipertingkat plasma (PECVD). Sel suria Si teringkas telah difabrikasi tanpa lapisan silikon nitrida (SiN) sebagai ARC. Dalam sel suria komersial, tekstur piramid pada Si wafer dan SiN telah digunakan untuk mengurangkan pantulan dan meningkatkan penyerapan cahaya. Dari pengukuran pantulan, SiN dan tekstur piramid menunjukkan pantulan yang agak sama. Kecekapan yang diperolehi oleh sel suria komersial, diringkas dan simulasi adalah masing-masing pada 17.09%, 9.44% dan 9.67%. Daripada kajian simulasi, ia membuktikan bahawa kecekapan yang rendah bagi sel suria teringkas adalah disebabkan oleh jangka hayat pembawa minoriti yang rendah pada Si wafer jenis-p.

 

Kata kunci: kristal silikon sel suria, kepingan silikon jenis-p, lapisan anti-pantulan, jangka hayat pembawa minoriti, simulasi PCID

 

References

1.       Asim, N., Sopian, K., Ahmadi, S., Saeedfar, K., Alghoul, M. A., Saadatian, O. and Zaidi, S. H. (2012). A review on the role of materials science in solar cells. Renewable and Sustainable Energy Reviews, 16(8): 5834 – 5847.

2.       Hahn, G. and Joos, S (2014). In chapter one: State-of-the-art industrial crystalline silicon solar cells. Advances in photovoltaics: Part 3. Willeke, G. and Weber, E. (Editors), 90: pp 1 – 72.

2.       Burgers, A R. Naber, R. C. G., Carr, J. J., Barton, P. C. C., Geerligs, L. J. J., Jinfeng, X., Li, G., Weiping, S., An, H., Hu, Z., Venema, P. R. and Vlooswijk, H. G. (2010). 19% efficiency n-type Si solar cells made in pilot production. 25th European Photovoltaic Solar Energy Conference and Exhibition: 1106 – 1109.

3.       Poliskie, M. (2013). Solar manufacturing environmental design concepts for modules. McGraw-Hill.

4.       Leong, C. S., Sopian, K. and Zaidi, S. H. (2013). Oxide passivated low reflection nano-structured solar cell. In Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th: pp. 1260 – 1264.

5.       Information from Faculty of Engineering, UNSW Sydney (2015). Access from https://www.engineering.unsw. edu.au. [Date access January 2016].

6.       Sepeai, S., Zaidi, S. H., Desa, M. K. M., Sulaiman, M. Y., Ludin, N. A., Ibrahim, M. A. and Sopian, K. (2013). Design optimization of bifacial solar cell by PC1D simulation. Journal of Energy Technologies and Policy, 3(5): 1 – 11.

 




Previous                    Content                    Next