Malaysian
Journal of Analytical Sciences Vol 21 No 5 (2017): 1127 - 1133
DOI:
https://doi.org/10.17576/mjas-2017-2105-15
PERFORMANCE ANALYSIS OF SIMPLIFIED SILICON SOLAR CELL ON P-TYPE CRYSTALLINE SILICON WAFER
(Analisis Prestasi Bagi
Sel Suria Silikon Teringkas Ke Atas Silikon Wafer Kristal Jenis-P)
Wan Zulhafizhazuan*, Suhaila
Sepeai, Cheow Siu Leong, Kamaruzzaman Sopian , Saleem H. Zaidi
Solar Energy Research Institute (SERI),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: wanzulhafizhazuan@gmail.com
Received: 12
April 2017; Accepted: 1 September 2017
Abstract
Crystalline silicon (c-Si) wafers are the dominating substrate materials
for solar cells in current photovoltaic (PV) industry. Silicon (Si) wafer with
positive-type (p-type) based solar
cells dominates almost 95% of the global PV market. Recent goal in Si solar
cell industry is focusing on cost reduction through inexpensive manufacturing
processes. Standard manufacturing process of Si solar cell fabrication consist
of damage removal, cleaning, texturing, phosphorus oxytrichloride
(POCl3) diffusion, anti-reflective coating (ARC)
deposition, metallization by screen printing technique, firing and light
current-voltage (LIV) testing. These fabrications line are time–consuming and
high temperature process which lead to high manufacturing cost. This study presents the simplification of Si
solar cell fabrication on p-type Si
wafer. Simplified fabrication process eliminates the ARC deposition by plasma
enhanced chemical vapour deposition (PECVD). Simplified Si solar cell was
fabricated without silicon nitride (SiN) as ARC layer.
In commercial solar cell, both pyramid texture on Si wafer and SiN have been
used to reduce reflectance and enhanced the light absorption. From the reflectance
measurement, it can be seen that SiN and pyramid texture shows an average
reflectance curve. The efficiency obtained by commercial, fabricated and
simulated solar cells were 17.09%, 9.44% and 9.67%, respectively. From the
simulation study, it is proven that the low efficiency of simplified solar cell
was attributed by low minority carrier lifetime of p-type Si wafer.
Keywords: crystalline silicon solar cell, p-type Si wafer, anti-reflective coating,
minority carrier life time, PC1D simulation
Abstrak
Kepingan silikon kristal (c-Si) adalah bahan substrat yang
mendominasi sel suria untuk industri fotovolta (PV) masa kini. Sel suria
berasaskan kepingan silikon (Si) berjenis-p
menguasai hampir 95% daripada pasaran PV global. Matlamat terkini dalam
industri sel suria Si memfokuskan kepada pengurangan kos melalui proses
pembuatan yang murah. Piawai pembuatan fabrikasi sel suria Si terdiri daripada
penyingkiran kotoran, pembersihan, penteksturan, penyerapan fosforus oksitriklorida
(POCl3), pemendapan lapisan anti-pantulan (ARC), penyaduran dengan
teknik percetakan skrin, pembakaran dan ujian cahaya arus-voltan (LIV). Proses
fabrikasi piawai ini memakan masa dan menggunakan suhu tinggi yang menyebabkan
kos pengeluaran yang tinggi. Kajian ini membentangkan peringkasan
proses fabrikasi sel suria Si di atas Si wafer jenis-p. Proses fabrikasi teringkas ini membuang proses pemendapan ARC oleh pengendapan
kimia dipertingkat plasma (PECVD). Sel suria Si teringkas telah difabrikasi
tanpa lapisan silikon nitrida (SiN) sebagai ARC. Dalam sel suria
komersial, tekstur piramid pada Si wafer dan SiN telah digunakan untuk
mengurangkan pantulan dan meningkatkan penyerapan cahaya. Dari pengukuran
pantulan, SiN dan tekstur piramid menunjukkan pantulan yang agak sama.
Kecekapan yang diperolehi oleh sel suria komersial, diringkas dan simulasi
adalah masing-masing pada 17.09%, 9.44% dan 9.67%. Daripada kajian simulasi, ia
membuktikan bahawa kecekapan yang rendah bagi sel suria teringkas adalah
disebabkan oleh jangka hayat pembawa minoriti yang rendah pada Si wafer jenis-p.
Kata kunci: kristal silikon sel
suria, kepingan silikon jenis-p, lapisan
anti-pantulan, jangka hayat pembawa minoriti, simulasi PCID
References
1. Asim, N.,
Sopian, K., Ahmadi, S., Saeedfar, K., Alghoul, M. A., Saadatian, O. and Zaidi,
S. H. (2012). A review on the role of materials science in solar cells. Renewable
and Sustainable Energy Reviews, 16(8): 5834 – 5847.
2. Hahn, G. and Joos, S (2014). In chapter one:
State-of-the-art industrial crystalline silicon solar cells. Advances in photovoltaics:
Part 3. Willeke, G. and Weber, E. (Editors), 90: pp 1 – 72.
2. Burgers, A
R. Naber, R. C. G., Carr, J. J., Barton, P. C. C., Geerligs, L. J. J., Jinfeng,
X., Li, G., Weiping, S., An, H., Hu, Z., Venema, P. R. and Vlooswijk, H. G. (2010).
19% efficiency n-type Si solar cells made in pilot production. 25th
European Photovoltaic Solar Energy Conference and Exhibition: 1106 – 1109.
3.
Poliskie, M. (2013). Solar manufacturing environmental design
concepts for modules. McGraw-Hill.
4. Leong, C.
S., Sopian, K. and Zaidi, S. H. (2013). Oxide passivated low reflection
nano-structured solar cell. In Photovoltaic Specialists Conference (PVSC),
2013 IEEE 39th: pp. 1260 – 1264.
5. Information
from Faculty of Engineering, UNSW Sydney (2015). Access from https://www.engineering.unsw. edu.au. [Date access
January 2016].
6. Sepeai, S.,
Zaidi, S. H., Desa, M. K. M., Sulaiman, M. Y., Ludin, N. A., Ibrahim, M. A. and
Sopian, K. (2013). Design optimization of bifacial solar cell by PC1D
simulation. Journal of Energy Technologies and Policy, 3(5): 1 – 11.