Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1120 - 1126
DOI:
https://doi.org/10.17576/mjas-2017-2105-14
INCORPORATION OF
GRAPHENE INTO COUNTER ELECTRODE TO ENHANCE THE PERFORMANCE OF DYE-SENSITIZED
SOLAR CELLS
(Pengabungan
Grafin dalam Elektrod Lawan untuk Meningkatkan Prestasi Sel Suria Terpeka
Pewarna)
Aisyah Bolhan and Norasikin Ahmad Ludin*
Solar Energy Research
Institute (SERI)
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: sheekeen@ukm.edu.my
Received: 12
April 2017; Accepted: 1 September 2017
Abstract
Platinum (Pt) is a
conventional material for counter electrodes of dye-sensitized solar cells
(DSSCs) due to its excellent electrocatalytic activity in the redox process.
However, the high cost of Pt motivates researchers to search for composite
materials of Pt to reduce its consumption. This study is aimed to reduce Pt
usage by incorporating reduced graphene oxide (rGO) with Pt of different ratios
in counter electrode thin films and to determine the optimum ratio with the
highest efficiency. A DSSC-based platinum/rGO (Pt/rGO) counter electrode
composite was fabricated using doctor-blade
method. X-ray diffraction analysis was
performed to examine the crystallite
structure of the Pt/rGO thin film. The optimum ratio was found to be 70:30 of
Pt:rGO, with current–voltage characterization showing an efficiency of 5.5%,
open-circuit voltage of 0.739 V, current density of 12.5 mA/cm2, and
fill factor of 59.24%.
Keywords: counter
electrode, dye-sensitized solar cell, graphene, platinum, thin film
Abstrak
Platinum
(Pt) adalah bahan konvensional untuk elektrod lawan sel suria terpeka pewarna
(DSSC) memandangkan ia mempunyai aktiviti pemangkinan-elektro dalam proses
redoks yang sangat baik. Namun begitu, harga Pt sangat mahal mendorong para
pengkaji untuk mencari bahan komposit Pt yang boleh mengurangkan penggunaannya.
Kajian ini menumpukan pengurangan penggunaan Pt dengan menggabungkannya dengan
grafin oksida terturun (rGO) dengan Pt dalam filem nipis elektrod lawan pada
nisbah berbeza dan untuk menentukan nisbah paling optimum yang meningkatkan
kecekapan. DSSC berasaskan komposit elektrod lawan platinum/grafin oksida
(Pt/rGO) telah difabrikasikan menggunakan kaedah doctor blade. Analisis Pembelauan sinar-X (XRD) telah dijalankan
untuk memeriksa struktur kristal pada filem nipis Pt/rGO. Nisbah optimum yang
dicapai adalah 70:30 kepada Pt:rGO dimana pencirian arus-voltan (I-V)
menunjukkan nilai kecekapan ialah 5.5%, dengan nilai litar voltan terbuka Voc, ketumpatan arus Jsc, dan faktor mengisi FF,
masing-masing dengan nilai 0.739 V, 12.5 mA/cm2 dan 59.24 %.
Kata
kunci: elektrod
lawan, sel suria terpeka pewarna, grafin, platinum, filem nipis
References
1.
Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A.
H. A. (2016). Photovoltaic penetration issues and impacts in distribution
network – a review. Renewable and
Sustainable Energy Review, 53: 594 – 605.
2.
Hua, Y., Oliphant, M. and Hu, E. J. (2016). Development of
renewable energy in Australia and China: A comparison of policies and status. Renewable Energy, 85: 1044 – 1051.
3.
Kardooni, R., Yusoff, S. and Kari, F. (2016). Renewable energy
technology acceptance in Peninsular Malaysia. Energy Policy, 88: 1 – 10.
4.
Smil, V. (1991). General
energetics: Energy in the biosphere and civilization. John Wiley: New
York, pp. 240.
5.
Green, M., Emery, K., Hishikawa, Y., Warta, W. and Dunlop,
E. (2015) Solar cell efficiency tables (Version 45). Progress in Photovoltaics Research and Application, 23: 1 – 9
6.
Yella, A., Lee, H., Tsao, H., Yi, C., Chandiran, A.,
Nazeeruddin, M., Diau, E., Yeh, C., Zakeeruddin, S. and Gratzel, M. (2011).
Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte
exceed 12 percent efficiency. Science,
334: 629 – 634.
7.
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R.,
Curchod, B., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin,
M. and Gratzel, M. (2014). Dye-sensitized solar cells
with 13% efficiency achieved through the molecular engineering of porphyrin
sensitizers. Nature Chemistry,
6: 242 – 247.
8.
Sugaya, T., Numakami, O., Oshima, R., Furue, S., Komaki,
H., Amano, T., Matsubara, K., Okano, Y. and Niki, S. (2012). Ultra-high stacks of InGaAs/GaAs quantum
dots for high efficiency solar cells. Energy and Environmental Science, 5 (3): 6233 – 6237
9.
Yue, G., Lin, J-Y.,
Tai, S-Y., Xiao, Y. and Wu, J. (2012). A catalytic
composite film of Mos2/graphene flake as a counter electrode for Pt-free
dye-sensitized solar cells. Electrochimica
Acta, 85: 162 – 168.
10.
Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L.
and Luo, G. (2015). Electrolytes in dye-sensitized solar cells. Chemical Reviews, 115(5): 2136 – 2173.
11.
Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C.
M. and Li, C. M. (2012). Graphene-Pt/ITO counter
electrode to significantly reduce Pt loading and enhance charge transfer for
high performance dye-sensitized solar cell. Solar Energy, 86: 2041 – 2048.
12.
Yun, S., Liu, Y., Zhang, T. and Ahmad,
S. (2015). Recent advances in alternative counter electrode materials
for Co-mediated dye-sensitized solar cells. Nanoscale, 7: 11877
– 11893.
13.
Duan, X., Gao, Z., Chang, J., Wu, D., Ma, P., He, J., Xu,
F., Gao, S. and Jiang, K. (2013). CoS2-graphene composite as
efficient catalytic counter electrode for dye-sensitized solar cell. Electrochimica Acta, 114: 173 – 179.
14.
Hoshi, H., Tanaka,
S. and Miyoshi, T. (2014). Pt-graphene electrodes for dye-sensitized solar
cells. Materials Science and Engineering
B, 190: 47 – 51.
15.
Lipson, H. and Steeple, H. (1970). Interpretation of X-ray powder diffraction pattern. Macmillan,
London.
16.
Martinson, A. B. F., Goes, M. S., Santiago, F. F., Bisquert,
J., Pellin, M. J. and Hupp, J. T. (2009). Electron transport in dye-sensitized
solar cells based on ZnO nanotubes: Evidence for highly efficient charge
collection and exceptionally rapid dynamics.
Journal of Physical Chemistry A, 113: 4015 – 4021.