Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1120 - 1126

DOI: https://doi.org/10.17576/mjas-2017-2105-14

 

 

 

INCORPORATION OF GRAPHENE INTO COUNTER ELECTRODE TO ENHANCE THE PERFORMANCE OF DYE-SENSITIZED SOLAR CELLS

 

(Pengabungan Grafin dalam Elektrod Lawan untuk Meningkatkan Prestasi Sel Suria Terpeka Pewarna)

 

Aisyah Bolhan and Norasikin Ahmad Ludin*

 

Solar Energy Research Institute (SERI)

 Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  sheekeen@ukm.edu.my

 

 

Received: 12 April 2017; Accepted: 1 September 2017

 

 

Abstract

Platinum (Pt) is a conventional material for counter electrodes of dye-sensitized solar cells (DSSCs) due to its excellent electrocatalytic activity in the redox process. However, the high cost of Pt motivates researchers to search for composite materials of Pt to reduce its consumption. This study is aimed to reduce Pt usage by incorporating reduced graphene oxide (rGO) with Pt of different ratios in counter electrode thin films and to determine the optimum ratio with the highest efficiency. A DSSC-based platinum/rGO (Pt/rGO) counter electrode composite was fabricated using doctor-blade method.   X-ray diffraction analysis was performed to examine the crystallite structure of the Pt/rGO thin film. The optimum ratio was found to be 70:30 of Pt:rGO, with current–voltage characterization showing an efficiency of 5.5%, open-circuit voltage of 0.739 V, current density of 12.5 mA/cm2, and fill factor of 59.24%.

 

Keywords:  counter electrode, dye-sensitized solar cell, graphene, platinum, thin film

 

Abstrak

Platinum (Pt) adalah bahan konvensional untuk elektrod lawan sel suria terpeka pewarna (DSSC) memandangkan ia mempunyai aktiviti pemangkinan-elektro dalam proses redoks yang sangat baik. Namun begitu, harga Pt sangat mahal mendorong para pengkaji untuk mencari bahan komposit Pt yang boleh mengurangkan penggunaannya. Kajian ini menumpukan pengurangan penggunaan Pt dengan menggabungkannya dengan grafin oksida terturun (rGO) dengan Pt dalam filem nipis elektrod lawan pada nisbah berbeza dan untuk menentukan nisbah paling optimum yang meningkatkan kecekapan. DSSC berasaskan komposit elektrod lawan platinum/grafin oksida (Pt/rGO) telah difabrikasikan menggunakan kaedah doctor blade. Analisis Pembelauan sinar-X (XRD) telah dijalankan untuk memeriksa struktur kristal pada filem nipis Pt/rGO. Nisbah optimum yang dicapai adalah 70:30 kepada Pt:rGO dimana pencirian arus-voltan (I-V) menunjukkan nilai kecekapan ialah 5.5%, dengan nilai litar voltan terbuka Voc, ketumpatan arus Jsc, dan faktor mengisi FF, masing-masing dengan nilai 0.739 V, 12.5 mA/cm2 dan 59.24 %.

 

Kata kunci:  elektrod lawan, sel suria terpeka pewarna, grafin, platinum, filem nipis

 

References

1.       Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A. H. A. (2016). Photovoltaic penetration issues and impacts in distribution network – a review. Renewable and Sustainable Energy Review, 53: 594 – 605.

2.       Hua, Y., Oliphant, M. and Hu, E. J. (2016). Development of renewable energy in Australia and China: A comparison of policies and status. Renewable Energy, 85: 1044 – 1051.

3.       Kardooni, R., Yusoff, S. and Kari, F. (2016). Renewable energy technology acceptance in Peninsular Malaysia. Energy Policy, 88: 1 – 10.

4.       Smil, V. (1991). General energetics: Energy in the biosphere and civilization. John Wiley: New York, pp. 240.

5.       Green, M., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. (2015) Solar cell efficiency tables (Version 45). Progress in Photovoltaics Research and Application, 23: 1 – 9

6.       Yella, A., Lee, H., Tsao, H., Yi, C., Chandiran, A., Nazeeruddin, M., Diau, E., Yeh, C., Zakeeruddin, S. and Gratzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334: 629 – 634.

7.       Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M. and Gratzel, M. (2014). Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 6: 242 – 247.

8.       Sugaya, T., Numakami, O., Oshima, R., Furue, S., Komaki, H., Amano, T., Matsubara, K., Okano, Y. and Niki, S. (2012). Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells. Energy and Environmental Science, 5 (3): 6233 – 6237

9.       Yue, G., Lin, J-Y., Tai, S-Y., Xiao, Y. and Wu, J. (2012). A catalytic composite film of Mos2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochimica Acta, 85: 162 – 168.

10.    Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L. and Luo, G. (2015). Electrolytes in dye-sensitized solar cells. Chemical Reviews, 115(5): 2136 – 2173.

11.    Guai, G. H., Song, Q. L., Guo, C. X., Lu, Z. S., Chen, T., Ng, C. M. and Li, C. M. (2012). Graphene-Pt/ITO counter electrode to significantly reduce Pt loading and enhance charge transfer for high performance dye-sensitized solar cell. Solar Energy, 86: 2041 – 2048.

12.    Yun, S., Liu, Y., Zhang, T. and Ahmad, S. (2015). Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells. Nanoscale, 7: 11877 – 11893.

13.    Duan, X., Gao, Z., Chang, J., Wu, D., Ma, P., He, J., Xu, F., Gao, S. and Jiang, K. (2013). CoS2-graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell. Electrochimica Acta, 114: 173 – 179.

14.    Hoshi, H., Tanaka, S. and Miyoshi, T. (2014). Pt-graphene electrodes for dye-sensitized solar cells. Materials Science and Engineering B, 190: 47 – 51.

15.    Lipson, H. and Steeple, H. (1970). Interpretation of X-ray powder diffraction pattern. Macmillan, London.

16.    Martinson, A. B. F., Goes, M. S., Santiago, F. F., Bisquert, J., Pellin, M. J. and Hupp, J. T. (2009). Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics.  Journal of Physical Chemistry A, 113: 4015 –  4021.

 

 




Previous                    Content                    Next