Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1111 - 1119

DOI: https://doi.org/10.17576/mjas-2017-2105-13

 

 

 

SINTESIS DAN PENCIRIAN HIDROGEL TERBIODEGRADASI BERASASKAN BAKTERIA SELULOSA MENGGUNAKAN

TEKNIK RADIASI ULTRA LEMBAYUNG

 

(Synthesis and Characterization of Biodegradable Bacterial Cellulose Based Hydrogels Using Ultra Violet Curable Radiation)

 

Norhanisah Jamaludin dan Azwan Mat Lazim*

 

Pusat Pengajian Sains Kimia dan Teknolohi Makanan,

Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:   azwanlazim@ukm.edu.my

 

 

Received: 16 January 2017; Accepted: 16 July 2017

 

 

Abstrak

Hidrogel terbiodegradasi berasaskan selulosa bakteria (BC) daripada nata de coco dihasilkan melalui proses radiasi ultra lembayung terawat. Selulosa bakteria (BC) telah digabungkan bersama akrilamida (AM) pada nisbah yang berbeza. N,N-metilena bisakrilamida (BIS) dan kalium persulfat (KPS) kemudiannya ditambah untuk mensintesis hidrogel dengan nisbah 5% w/v (hidrogel A) dan 10% w/v (hidrogel B). Hidrogel berasaskan AM juga turut disintesis dengan label hidrogel pemalar. Dalam kajian ini, akrilamida (AM) bertindak sebagai monomer dan terikat pada struktur tulang belakang selulosa. Kalium persulfat (KPS) bertindak sebagai bahan pemula cahaya di mana ianya membantu dalam menghasilkan radikal bebas dan N,N-metilena bisakrilamida (BIS) pula berfungsi sebagai agen pentaut silang. Berdasarkan penggunaan teknik radiasi dan bahan pemula cahaya, tindak balas yang terlibat adalah pempolimeran radikal bebas. Lima analisis telah dilakukan bagi mencirikan hidrogel A dan B iaitu ujian pengembangan menggunakan lima larutan penimbal pH, analisis struktur kimia, analisis gravimetri termal (TGA), analisis kalorimetri pengimbasan pembezaan (DSC) dan analisis pembelauan sinar-X. Morfologi permukaan bagi kedua – dua hidrogel A dan B juga telah ditentukan menggunakan analisis mikroskopi pengimbasan elektron (SEM). Hasil analisis telah menunjukkan kewujudan liang – liang terbuka dalam hidrogel A adalah lebih banyak berbanding dengan hidrogel B.

 

Kata kunci:  hidrogel, selulosa bakteria, ultra lembayung terawat

 

Abstract

A rapid biodegradable hydrogel made up of bacterial cellulose (BC) from nata de coco was prepared by curing it under the ultra violet (UV) radiation. Bacterial cellulose (BC) is grafted with acrylamide (AM) at different proportions. Potassium persulphate (KPS) and N,N-methylene bisacrylamide (BIS) are added to synthesize hydrogels at the ratio of 5% w/v (hydrogel A) and 10% w/v (hydrogel B). Acrylamide hydrogel is also synthesized as a control hydrogel. In this research, acrylamide acts as a monomer that binds itself to the cellulose backbone while potassium persulfate (KPS) as an intiator where it produces free radicals. The N,N-methylene bisacrylamide (BIS) is used as a cross linker. Here, free radical polymerization is involved. Several analyses have been done to characterise hydrogel A and B which are swelling test in five different buffer solutions, chemical structure analysis, thermal gravimetry analysis (TGA), diffrential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphology for both hydrogel A and B are also determined by using scanning electron microscopy (SEM) analysis. The images found that the pores in hydrogel A were more than in hydrogel B.

 

Keywords:  hydrogel, bacterial cellulose, curable ultra violet

 

References

1.       Schacht, E. H. (2004). Polymer chemistry and hydrogel systems. Journal of Physics: Conference Series, 3: 22 – 28.

2.       Hoffman A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 43: 3 – 12.

3.       Langer, R. and Peppas, N. A. (2003). Advances in biomaterials, drug delivery, and bionanotechnology. Bioengineering, Food, And Natural Products, 49(2003): 2990 – 3006.

4.       Brown, R. M., Jr. (2004). Cellulose structure and biosynthesis: What is on the store for the 21st   Century? Journal of Polymer Science: Part A: Polymer Chemistry, 42(3): 487 – 495

5.       Sannino, A., Demitri, C. and Madaghiele, M. (2009). A review on biodegradable cellulose-based hydrogels: Design and applications. Materials, 2(2009): 353 – 373.

6.       Halib, N., Amin, M. C. I. M. and Ahmad, I. (2012). Physicochemical properties and characterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41(2): 205 – 211.

7.       Azman, I., Mutalib, S. A., Yusoff, S. F. M., Fazry, S., Noordin, A., Kumaran, M. and Lazim, A. M. (2016). Novel dioscorea hispida starch-based hydrogels and their beneficial use as disinfectants. Journal of Bioactive and Compatible Polymers, 31(1): 42 – 59.

8.       Amin, M. C. I. M., Abadi, A. G., Ahmad, N., Katas, H. and Jamal, J. A. (2012). Bacterial cellulose film coating as drug delivery system: Physicochemical, thermal and drug release properties. Sains Malaysiana, 41(5): 561 – 568.

9.       Amin, M. C. I. M., Ahmad, N., Halib, N. and Ahmad, I. (2012). Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers, 88(2): 465 – 473.

10.    Pandey, M. and Amin, M. C. I. M. (2012). Accelerated preparation of novel bacteria cellulose/acrylamide-based hydrogel by microwave irradiation. International Journal of Polymeric Materials, 62: 402 – 405.

11.    Voutou, B. and Stefanaki, E. C. (2008). Electron microscopy: The basics. Physics of Advanced Materials Winter School, 2008: pp. 1 – 11.

12.    Halib, N., Amin, M. C. I. M. and Ahmad, I. (2010). Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. Journal of Applied Polymer Science, 116: 2920 – 2929.

13.    Lampman, G. M., Pavia, D. L., Kriz, G. S. and Vyvyan, J. R. (2010). Introduction to Spectroscopy. United States of America: Brooks/Cole Cengage Learning.

14.    Jager, H. J. and Prinsloo, L. C. (2001). The dehydration of phosphates monitored by DSC/TGA and in situ Raman spectroscopy. Thermochimica Acta, 376: 187 – 196.

15.    Prevey, P. S. (2009). X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxylapatite coatings. Journal of Thermal Spray Technology, 9(3): 369 – 376.

16.    Scintag Inc. (1999). Chapter 7: Basic of X-ray diffraction. www.scintag.com [Access online 10 Mei 2013].

 




Previous                    Content                    Next