Malaysian
Journal of Analytical Sciences Vol 21 No 5 (2017): 1080 - 1090
DOI:
https://doi.org/10.17576/mjas-2017-2105-10
CALCIUM CONTENT OF LIME MORTARS FROM 19th
CENTURY CHURCH RUINS IN THE PHILIPPINES USING VOLUMETRIC ANALYSIS
(Kandungan Kalsium Mortar
Batu Kapur dari Runtuhan Gereja Abad Ke 19 di Filipina Menggunakan Analisis
Volumetrik)
Jan-Michael C. Cayme* and Aniano N. Asor, Jr
Chemistry
Department, College of Science,
De La Salle
University, 2401 Taft Avenue, Malate, Metro Manila, Philippines
*Corresponding author: jm_cayme@yahoo.com
Received: 12
April 2017; Accepted: 25 July 2017
Abstract
A
calcium determination method for lime mortars in old church ruins is described.
Two volumetric analysis methods were employed: titration using EDTA solution,
and with KMnO4 solution. The binder fraction with sieve size
(<0.075mm) was used for titration which is abundant in CaCO3 as
established by Fourier-Transform Infrared Spectroscopy (FTIR) technique. The
mortar sample from Misamis Oriental yields a mean calcium concentration of
59.60% ± 4.64 and 60.48% ± 6.68 for EDTA and KMnO4, respectively,
while the Metro Manila mortar sample is 73.54% ± 2.68 for EDTA and 73.33% ±
6.88 for KMnO4. Two tailed t-test
and F-test analysis confirm that
there is no statistical difference between EDTA and KMnO4 methods in
determining the calcium content. Atomic Absorption Spectroscopy (AAS) technique
validated the mean concentration values obtained from each method with less
than 6.4% difference. The proposed titration methods are simple, rapid and
sufficiently precise, without the use of expensive analytical instruments. This
study is a good alternative method to easily determine the amount of calcium in
historic lime mortars which is valuable in heritage conservation work and
restoration of old structures in the Philippines.
Keywords: lime mortar, titration, Fourier transform
infrared spectroscopy, atomic absorption spectroscopy, cultural heritage
conservation
Abstrak
Satu kaedah penentuan kalsium untuk mortar
batu kapur dalam runtuhan gereja lama telah dibincangkan. Dua kaedah analisis
volumetrik telah dibangunkan; pentitratan menggunakan larutan EDTA dan KMnO4.
Pecahan mengikut saiz ayak (<0.075mm) telah digunakan untuk pentitratan yang
kaya dengan CaCO3 yang telah ditentukan oleh teknik inframerah transformasi
Fourier (FTIR). Sampel mortar batu kapur dari Misamis Oriental menghasilkan
purata kepekatan kalsium 59.60% ± 4.64 dan 60.48% ± 6.68 untuk masing-masing
EDTA dan KMnO4, manakala sampel mortar batu kapur Metro Manila
adalah 73.54% ± 2.68 untuk EDTA dan 73.33% ± 6.88 untuk KMnO4. Analisis
ujian-t dan ujian-F mengesahkan bahawa tidak ada perbezaan signifikan antara
kaedah EDTA dan KMnO4 dalam penentuan kandungan kalsium. Teknik
spektroskopi serapan atom (AAS) telah menentusahkan nilai kepekatan yang diambil
dari setiap kaedah memberikan perbezaan kurang daripada 6.4%. Kaedah
pentitratan yang dicadangkan adalah mudah, cepat dan cukup tepat, tanpa
menggunakan instrumen analisis mahal. Kajian ini merupakan alternatif yang baik
dengan mudah menentukan kandungan kalsium dalam mortar batu kapur bersejarah
yang berharga dalam kerja-kerja pemuliharaan warisan dan pemulihan struktur
lama di Filipina.
Kata kunci: mortar kapur, pentitratan, spektroskopi
inframerah transformasi Fourier, spektroskopi serapan atom, pemuliharaan
warisan budaya
References
1. Jose, Jr., R. T.
(2003). Palitada: Skin of the church.
In: Zero In: Skin surface essence. Ateneo Art Gallery, Ayala Foundation, Inc.,
Eugenio Lopez Foundation, Inc., and Museum Pambata Foundation, Inc.: pp. 27 –28.
2. Elert, K., Rodriguez-Navarro, C., Sebastian Pardo, E.,
Hansen, E. and Cazallo, O. (2002). Lime mortars for the conservation of
historic buildings. Studies in
Conservation, 47: 62 – 75.
3. Moropoulou, A.,
Bakolas, A. and Aggelakopoulou, E. (2000). The effects of limestone
characteristics and calcinations temperature to the reactivity of the
quicklime. Cement and Concrete Research,
31: 633 – 639.
4. Neri, L. M. (2011).
A report on the archaeological survey along the coastal area of Misamis
Oriental, Philippines. Hukay (Journal for
Archaeological Research in Asia and the Pacific), 16: 1 – 27.
5. Javellana, S. J. R. B. (2010). La Casa de Dios,
The legacy of Filipino-Hispanic churches in the Philippines. Pasig: Ortigas
Foundation, Inc.: pp. 184 – 187.
6. Cheng,
K. L., Kurtz, T. and Bray, R. H. (1952). Determination of calcium, magnesium,
and iron in limestone. Analytical Chemistry, 24(10):1640 – 1641.
7. Skoog, D. A.,
West, D. M., Holler, F. J. and Crouch, S. R. (2013). Fundamentals of analytical
chemistry, 9th Ed. Brooks/Cole, Cengage Learning: pp. 991 – 994.
8. Page, J. O.
(1968). Compleximetric determination of calcium in impure calcium carbonate and
limestone. Analytica Chimica Acta,
42: 233 – 238.
9. Malmstadt, H. V.
and Hadjiioannou, T. P. (1958). Rapid and accurate automatic titration of
calcium and magnesium in dolomites and limestones use of EDTA titran and
automatic derivative spectrophotometric end-point termination. Analytica Chimica Acta, 19: 563 – 569.
10. Rathore, D. P. S.,
Kumar, M. and Bhargava, P. K. (1997). Complexometric determination of calcium
and magnesium in dolomite, limestone, magnesite, phosphatic and silicate
matrices using azochromotropic acid derivative as an indicator. Chemia Analityczna (Warsaw),.
11. Hadjiioannou, T.
P. and Papastathopoulous, D. S. (1970). EDTA titration of calcium and magnesium
with calcium-selective electrode. Talanta,
17(5): 399 – 406.
12. De Oliveira, W. and Mendes, A. (1987). Determination of calcium and magnesium
in limestone and dolomite by enthalpimetric flow-injection analysis. Talanta, 34(6): 543 – 546.
13. Robinson, P.
(1980). Determination of calcium, magnesium, manganese, strontium, sodium and
iron in the carbonate fraction of limestones and dolomites. Chemical Geology, 28: 135 – 146.
14. Middendorf, B.,
Hughes, J. J., Callebaut, K., Baronio, G. and Papayianni, I. (2005). Investigative
methods for the characterisation of historic mortars. Part 2: Chemical characterization.
Materials and Structures, 38: 771 – 780.
15. Pires, J.
(2015). Simple analysis of historical lime mortars. Journal of Chemical Education, 92: 521 –523.
16. Cayme, J. M. and
Asor, Jr, A. N. (2015). Extraction methods for quantifying iron, calcium and
magnesium in a historic brickwork produced during the Spanish Colonial Period
in the Philippines. KIMIKA, 26(1): 28
– 38.
17. Reddy, B.V.V.
and Gupta, A. (2008). Influence of sand gradation on the characteristics of
mortars and soil cement block masonry. Construction
and Building Materials, 22: 1614 – 1623.
18. Miranda, J.,
Carvalho, A. P. and Pires, J. (2012). Assessment of the binder in historical
mortars by various techniques. Archaeometry,
54(2): 267 – 277.
19. Holtz, R. and
Kovacs, W. (1981). An introduction to geotechnical engineering. Prentice-Hall,
Inc, New Jersey.
20. Cayme, J. M., Asor, Jr, A. N., Alano, M. K. A. T. and
Miranda, E.T. (2016). Chemical
characterization of historical brickwork of the church convento in Pagsanjan,
Laguna. KIMIKA, 27(1): 30 – 41.
21. Music, S.,
Filipovic-Vincekovic, N. and Sekovanic, L. (2011). Precipitation of amorphous
SiO2 particles and their properties. Brazilian
Journal of Chemical Engineering, 28(1): 89 – 94.
22. Couto, M. F.,
Peternelli, L. A. and Barbosa, M. H. P. (2013). Classification of the
coefficients of variation for sugarcane crops. Ciencia Rural, Santa Maria, 43(6): 975 – 961.
23. Limentani, G. B.,
Ringo, M. C., Ye, F., Bergquist, M. L. and McSorley, E. O. (2005). Beyond the
t-test: Statistical equivalence testing. Analytical
Chemistry, 77(11): 221 – 226.
24. Lung, K. R.,
Gorko, M. A, Llewelyn, J. and Wiggins, N. (2003). Statistical method for the
determination of equivalence of automated test procedures. Journal of Automated Methods and management in Chemistry, 25(6): 123
– 127.
25. Miller, J. C.
and Miller, J. N. (1993). Statistics for analytical chemistry, 3rd
Ed. Ellis Horwood PTR Prentice Hall, New York: pp. 5 – 10.