Malaysian
Journal of Analytical Sciences Vol 21 No 5 (2017): 1091 - 1100
DOI:
https://doi.org/10.17576/mjas-2017-2105-11
A NEW AUTOMATED GAS CHROMATOGRAPHY/SOLID PHASE MICROEXTRACTION
PROCEDURE FOR DETERMINING
α-FLUORO-β-ALANINE IN
URINE
(Kaedah Baru Pengekstrakan
Mikro Fasa Pepejal/Kromatografi Gas Berautomatik α-Fluoro-β-Alanina di dalam
Urin)
Stefano Dugheri1*, Alessandro
Bonari2, Ilenia Pompilio2, Matteo Gentili3,
Manfredi Montalti2, Nicola Mucci2, Giulio Arcangeli2
1Laboratorio di
Igiene e Tossicologia Industriale,
Azienda Ospedaliero-Universitaria Careggi, Firenze,
Italy
2Dipartimento di
Medicina Sperimentale e Clinica,
Università degli Studi di Firenze,
Firenze, Italy
3Giotto Biotech Srl, Sesto Fiorentino, Italy
*Corresponding author: stefano.dugheri@unifi.it
Received: 15
February 2017; Accepted: 16 June 2017
Abstract
In industrial
hygiene, biomarkers maintain their promise to reveal the true extent of
occupational exposure. The environmental limit values proposed by industrial
hygienist associations are more than biological, health-based values indicating
professional hazards to humans. High-throughput screening of samples is
therefore the strategy of choice to detect occupational exposure biomarkers, yet
it requires user-friendly apparatus that give relatively prompt results while
ensuring high degrees of selectivity, precision, accuracy and automation,
particularly in preparation processes. In light of the above, this contribution
describes a novel gas chromatography/triple quadrupole mass spectrometry/positive chemical ionisation
approach for determining urinary α-fluoro-β-alanine, a metabolite of 5-fluorouracil, the most
widely employed antineoplastic drug. In this new procedure chromatography’s sensitivity
is combined with the user-friendliness of alkyl chloroformate/trialkyloxonium
on-sample derivatizations followed by solid-phase microextraction sampling, to
which is added the quantitative accuracy afforded using a specific
isotope-labelled internal standard. The quantification limit for -fluoro--alanine was 25.4 µg/L. Intra- (3.8%) and inter-session (4.5%) repeatability was
also evaluated.
This method serves to identify suitable risk-control
strategies for occupational hygiene conservation programs.
Keywords: a-fluoro-b-alanine, solid
phase microextraction, gas chromatography, occupational medicine
Dalam industri
kesihatan, penanda biologi mengekalkan peranannya untuk mendedahkan sejauh mana
keselamatan pekerjaan. Nilai had persekitaran yang dicadangkan oleh persatuan industri
kesihatan melebihi daripada aspek biologi, iaitu tahap berasaskan kesihatan
yang menunjukkan bahaya kepada manusia. Melalui saringan sampel, pemilihan
strategi penting untuk mengesan pekerjaan yang terdedah kepada penanda biologi,
maka alatan mesra pengguna yang memberikan keputusan segera disamping
memastikan nilai kepilihan, kejituan, ketepatan dan bersifat automatik perlulah
menjadi sebahagian proses tersebut. Sehubungan itu, sumbangan kajian ini adalah
membincangkan kaedah novel kromatografi gas/spektrometri jisim caturkutub ganda
tiga/pengionan kimia positif digunakan untuk penentuan α-fluoro-β-alanina di
dalam urin, iaitu metabolit 5-fluorourasil yang
digunakan secara meluas sebagai dadah antineoplastik. Melalui prosedur baru
ini, sensitiviti kromatografi digabungkan bersama menggunakan kloroformat/trialkiloksonium
di ikuti oleh pensampelan pengekstrakan mikro fasa pepejal, di mana ketepatan
kuantitatif analisis didorong oleh penggunaan larutan piawai internal berlabel
isotop. Had kuantifikasi a-fluoro-b-alanina ialah 25.4 µg/L. Kebolehulangan intra- (3.8%) dan inter- (4.5%)
juga telah di uji. Kaedah ini menyediakan strategi kawalan penilaian risiko
yang sesuai untuk program pemuliharaan kesihatan pekerjaan.
Kata kunci: a-fluoro-b-alanina, pengekstrakan mikro fasa pepejal, kromatografi gas, pekerjaan perubatan
References
1.
Breda, M. and Barattè, S. (2010). A review of analytical
methods for the determination of 5-fluorouracil in biological matrices. Analytical
Bioanalytical Chemistry, 397(3): 1191 – 1201.
2.
Rubino, F. M., Verduci, C.,
Buratti, M., Fustinoni, S., Campo, L., Omodeo-Salè, E., Giglio, M., Iavicoli,
S., Brambilla, G. and Colombi, A. (2006).
Assay of urinary
alpha-fluoro-beta-alanine by gas chromatography-mass spectrometry for the
biological monitoring of occupational exposure to 5-fluorouracil in oncology nurses and pharmacy
technicians. Biomedical
Chromatography, 20(3): 257 –266.
3.
Nair, K. L., Jagadeeshan, S., Nair, S. A. and Kumar, G. S. (2011). Biological evaluation of 5-fluorouracil nanoparticles
for cancer chemotherapy and its dependence on the carrier, PLGA. International Journal of Nanomedicine, 6:1685 – 1697.
4.
Jaferian, S., Negahdari, B. and Eatemadi, A. (2016). Colon cancer targeting using
conjugates biomaterial 5-flurouracil. Biomedicine
& Pharmacotherapy,
84: 780 – 788.
5.
Sessink, P. J., Timmersmans, J. L., Anzion, R. B. and Bos, R. P. (1994). Assessment of occupational exposure
of pharmaceutical plant workers to 5-fluorouracil.
Journal Occupational Medicine, 36(1):79-83.
6.
Anderson, D., Kerr, D. J.,
Blesing, C., and Seymour, L. W. (1997). Simultaneous gas chromatographic-mass
spectrophotometric determination of alpha-fluoro-beta-alanine and
5-fluorouracil in plasma. Journal of
Chromatography B: Biomedical Sciences and Applications, 688(1): 87 – 93.
7.
Licea-Perez, H., Wang, S. and
Bowen, C. (2009). Development of a sensitive and selective LC-MS/MS method for
the determination of alpha-fluoro-beta-alanine, 5-fluorouracil and capecitabine
in human plasma. Journal of Chromatography. B, Analytical Technologies
in the Biomedical and Life Sciences, 877(11-12): 1040
– 1046.
8.
Ndaw, S., Denis, F., Marsan, P.,
d'Almeida, A. and Robert, A. (2010). Biological monitoring of occupational
exposure to 5-fluorouracil: urinary α-fluoro-β-alanine assay by high
performance liquid chromatography tandem mass spectrometry in health care
personnel. Journal of Chromatography. B,
Analytical Technologies in the Biomedical and Life Sciences, 878(27): 2630 – 2634.
9.
Bos, R. P., Weissenberger, B. F.
J. and Anzion, R. B. M. (1998). α-Fluoro-β-alanine in urine of workers
occupationally exposed to 5-fluorouracil in a 5-fluorouracil producing factory.
Biomarkers, 3(1): 81 – 87.
10.
Furuhata, T., Kawakami, M., Okita,
K., Kimura, Y., Kihara, C., Tsuruma, T., Ohmura, T., Yamaguchi, K., Hata, F.,
Katsuramaki, T., Sasaki, K. and Hirata, K. (2006). Plasma level of a
5-fluorouracil metabolite, α-fluoro-β-alanine correlates with dihydropyrimidine
dehydrogenase activity of peripheral blood mononuclear cells in 5-fluorouracil
treated patients. Journal of Experimental
and Clinical Cancer Research, 25(1): 79 – 82.
11.
Yoshida, J., Koda, S., Nishida,
S., Nakano, H., Tei, G. and Kumagai, S. (2013). Association between
occupational exposure and control measures for antineoplastic drugs in a
pharmacy of a hospital. Annals of
Occupational Hygiene, 57(2): 251 – 260.
12.
Poupeau, C., Tanguay, C., Plante,
C., Gagné, S., Caron, N. and Bussières, J. F. (2016). Pilot study of biological
monitoring of four antineoplastic drugs among Canadian healthcare workers. Journal of Oncology Pharmacy Practice,
April:1-10.
13.
Handley, J. and Harris, C. M.
(2001). Great ideas of a decade. Analytical
Chemistry, 73(23): 660 – 666.
14.
Bianchi, F., Bisceglie, F., Dugheri, S., Arcangeli, G., Cupelli, V., Del
Borrello, E., Sidisky, L. and Careri, M. (2014). Ionic
liquid-based solid phase microextraction necklaces for the environmental
monitoring of ketamine. Journal of
Chromatography A, 1331: 1 – 9.
15.
Sassolini, A., Dominici, C., Saurini, M. T., Guidotti, M., Cenciarelli, O.,
Malizia, A., Ludovici, G. M., Gabbarini, V., Gabriele, J., Bellecci, C.,
Palombi, L. and Gaudio, P. (2015). Development of
a SPME-GC-MS based methods for analysis of organochlorinated smoke agents in
soil and its applications in a former military site samples. Malaysian Journal of Analytical Sciences,
19(6): 1179 – 1186.
16.
Kremser A., Jochmann, M. A., and Schmidt,
T. C. (2016). SPME Arrow-evaluation of a novel solid-phase microextraction device
for freely dissolved PAHs in water. Analytical
and Bioanalytical Chemistry, 408(3): 943 – 952.
17.
Dugheri, S., Bonari, A., Pompilio, I., Mucci, N., Montalti, M. and
Arcangeli, G. (2016). Development of new gas chromatography/mass
spectrometry procedure for the determination of hexahydrophthalic anhydride in
unsaturated polyester resins. RASĀYAN
Journal of Chemistry, 9(4): 657 – 666.
18.
Stereochemistry
of catabolism of the DNA base thymine and of the anti-cancer drug
5-fluorouracil. Journal of the Chemical Society, Perkin Transactions, 1: 1363 – 1372.
19.
Miller, J.
C. and Miller, J. N. (1984). Statistics for analytical chemistry, Ellis
Horwood: Chinchester, 4: pp. 96.
20.
Zhang, Z. and Pawliszyn, J.
(1993). Headspace solid-phase microextraction. Analytical Chemistry,
65(14): 1843 – 1852.
21.
Pacenti, M., Dugheri, S., Villanelli, F., Bartolucci, G., Calamai, L.,
Boccalon, P., Arcangeli, G., Vecchione, F., Alessi, P., Kikic, I. and Cupelli
V. (2008). Determination of organic acids in urine
by solid-phase microextraction and gas chromatography-ion trap tandem mass
spectrometry previous 'in sample' derivatization with trimethyloxonium
tetrafluoroborate. Biomedical Chromatography, 22(10): 1155 –
1163.
22.
Hušek, P. (1998).
Chloroformates in gas chromatography as general purpose derivatizing
agents. Journal of
Chromatography B: Biomedical Sciences and Applications, 717(1-2): 57 – 91.
23.
Hušek, P., Švagera, Z.,
Hanzlíková, D., Řimnáčová, L., Zahradníčková, H., Opekarová, I. and Šimek, P.
(2016). Profiling of urinary amino-carboxylic
metabolites by in-situ heptafluorobutyl chloroformate mediated sample
preparation and gas chromatography-mass spectrometry. Journal of
Chromatography A, 1443: 211 –
232.
24.
Bianchi, F., Dugheri, S., Musci, M., Bonacchi, A., Salvatori, E., Arcangeli,
G., Cupelli,V., Lanciotti, M., Masieri, L., Serni, S., Carini, M., Careri, M.
and Mangia, A. (2011). Fully automated solid-phase
microextraction-fast gas chromatography-mass spectrometry method using a new
ionic liquid column for high-throughput analysis of sarcosine and
N-ethylglycine in human urine and urinary sediments. Analytica Chimica Acta, 707(1-2): 197
– 203.
25.
Naccarato, A., Gionfriddo, E.,
Sindona, G. and Tagarelli, A. (2014). Development of a simple and rapid solid
phase microextraction-gas chromatography-triple quadrupole mass spectrometry
method for the analysis of dopamine, serotonin and norepinephrine in human
urine. Analytica Chimica Acta, 810: 17 –24.
26.
Makita,
M., Yamamoto,
S. and Kõno, M. (1976). Gas-liquid chromatographic analysis of protein amino
acids as N-isobutyloxycarbonylamino acid methyl esters. Journal
of Chromatography, 120(1): 129 –140.
27.
Makita, M., Yamamoto, S., Sakai, K. and Shiraishi, M. (1976).
Gas-liquid chromatography of the N-isobutyloxycarbonyl methyl esters of
non-protein amino acids. Journal of Chromatography, 124: 92 –96.
28.
Wang, J., Huang, Z. H., Gage, D. A.
and Watson,
J. T. (1994). Analysis
of amino acids by gas chromatography-flame ionization detection and gas
chromatography-mass spectrometry: simultaneous derivatization of functional
groups by an aqueous-phase chloroformate-mediated reaction. Journal of Chromatography A,
663(1):
71 – 78.
29.
Meerwein, H., Hinz, G., Hofmann, P., Kroning,
E. and Pfeil, E. (1937). Über Tertiäre Oxoniumsalze, I. Journal für praktische
Chemie, 147(10-12): 257 – 285.
30.
Liebich, H. M. and Gesele, E. (1999). Profiling of
organic acids by capillary gas chromatography-mass spectrometry after direct
methylation in urine using trimethyloxonium tetrafluoroborate. Journal of Chromatography A,
843(1-2): 237 – 245.
31.
Amazzini, S., Onor, M., Pagliano, E., Mester, Z., Campanella, B., Pitzalis,
E., Bramanti, E. and D’Ulivo, A. (2015). Determination of thiocyanate in
saliva by headspace gas chromatography-mass spectrometry, following a
single-step aqueous derivatization with triethyloxonium tetrafluoroborate. Journal
of Chromatography A, 1400: 124 –
130.