Malaysian Journal of Analytical Sciences Vol 21 No 5 (2017): 1091 - 1100

DOI: https://doi.org/10.17576/mjas-2017-2105-11

 

 

 

A NEW AUTOMATED GAS CHROMATOGRAPHY/SOLID PHASE MICROEXTRACTION PROCEDURE FOR DETERMINING

α-FLUORO-β-ALANINE IN URINE

 

(Kaedah Baru Pengekstrakan Mikro Fasa Pepejal/Kromatografi Gas Berautomatik α-Fluoro-β-Alanina di dalam Urin)

 

Stefano Dugheri1*, Alessandro Bonari2, Ilenia Pompilio2, Matteo Gentili3, Manfredi Montalti2, Nicola Mucci2, Giulio Arcangeli2

 

1Laboratorio di Igiene e Tossicologia Industriale,

Azienda Ospedaliero-Universitaria Careggi, Firenze, Italy

2Dipartimento di Medicina Sperimentale e Clinica,

Università degli Studi di Firenze, Firenze, Italy

3Giotto Biotech Srl, Sesto Fiorentino, Italy

 

*Corresponding author:  stefano.dugheri@unifi.it

 

 

Received: 15 February 2017; Accepted: 16 June 2017

 

 

Abstract

In industrial hygiene, biomarkers maintain their promise to reveal the true extent of occupational exposure. The environmental limit values proposed by industrial hygienist associations are more than biological, health-based values indicating professional hazards to humans. High-throughput screening of samples is therefore the strategy of choice to detect occupational exposure biomarkers, yet it requires user-friendly apparatus that give relatively prompt results while ensuring high degrees of selectivity, precision, accuracy and automation, particularly in preparation processes. In light of the above, this contribution describes a novel gas chromatography/triple quadrupole mass  spectrometry/positive chemical ionisation approach for determining urinary α-fluoro-β-alanine, a metabolite of 5-fluorouracil, the most widely employed antineoplastic drug. In this new procedure chromatography’s sensitivity is combined with the user-friendliness of alkyl chloroformate/trialkyloxonium on-sample derivatizations followed by solid-phase microextraction sampling, to which is added the quantitative accuracy afforded using a specific isotope-labelled internal standard. The quantification limit for -fluoro--alanine was 25.4 µg/L. Intra- (3.8%) and inter-session (4.5%) repeatability was also evaluated. This method serves to identify suitable risk-control strategies for occupational hygiene conservation programs.

 

Keywords:  a-fluoro-b-alanine, solid phase microextraction, gas chromatography, occupational medicine

 

Abstrak

Dalam industri kesihatan, penanda biologi mengekalkan peranannya untuk mendedahkan sejauh mana keselamatan pekerjaan. Nilai had persekitaran yang dicadangkan oleh persatuan industri kesihatan melebihi daripada aspek biologi, iaitu tahap berasaskan kesihatan yang menunjukkan bahaya kepada manusia. Melalui saringan sampel, pemilihan strategi penting untuk mengesan pekerjaan yang terdedah kepada penanda biologi, maka alatan mesra pengguna yang memberikan keputusan segera disamping memastikan nilai kepilihan, kejituan, ketepatan dan bersifat automatik perlulah menjadi sebahagian proses tersebut. Sehubungan itu, sumbangan kajian ini adalah membincangkan kaedah novel kromatografi gas/spektrometri jisim caturkutub ganda tiga/pengionan kimia positif digunakan untuk penentuan α-fluoro-β-alanina di dalam urin, iaitu metabolit 5-fluorourasil yang digunakan secara meluas sebagai dadah antineoplastik. Melalui prosedur baru ini, sensitiviti kromatografi digabungkan bersama menggunakan kloroformat/trialkiloksonium di ikuti oleh pensampelan pengekstrakan mikro fasa pepejal, di mana ketepatan kuantitatif analisis didorong oleh penggunaan larutan piawai internal berlabel isotop. Had kuantifikasi a-fluoro-b-alanina ialah 25.4 µg/L. Kebolehulangan intra- (3.8%) dan inter- (4.5%) juga telah di uji. Kaedah ini menyediakan strategi kawalan penilaian risiko yang sesuai untuk program pemuliharaan kesihatan pekerjaan.      

 

Kata kunci:  a-fluoro-b-alanina, pengekstrakan mikro fasa pepejal, kromatografi gas, pekerjaan perubatan

 

References

1.       Breda, M. and Barattè, S. (2010). A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Analytical Bioanalytical Chemistry, 397(3): 1191 – 1201.

2.       Rubino, F. M., Verduci, C., Buratti, M., Fustinoni, S., Campo, L., Omodeo-Salè, E., Giglio, M., Iavicoli, S., Brambilla, G. and Colombi, A. (2006). Assay of urinary alpha-fluoro-beta-alanine by gas chromatography-mass spectrometry for the biological monitoring of occupational exposure to 5-fluorouracil in oncology nurses and pharmacy technicians. Biomedical Chromatography, 20(3): 257 –266.

3.       Nair, K. L., Jagadeeshan, S., Nair, S. A. and Kumar, G. S. (2011). Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. International Journal of Nanomedicine, 6:1685 – 1697.

4.       Jaferian, S., Negahdari, B. and Eatemadi, A. (2016). Colon cancer targeting using conjugates biomaterial 5-flurouracil. Biomedicine & Pharmacotherapy, 84: 780 – 788.

5.       Sessink, P. J., Timmersmans, J. L., Anzion, R. B. and Bos, R. P. (1994). Assessment of occupational exposure of pharmaceutical plant workers to 5-fluorouracil. Journal Occupational Medicine, 36(1):79-83.

6.       Anderson, D., Kerr, D. J., Blesing, C., and Seymour, L. W. (1997). Simultaneous gas chromatographic-mass spectrophotometric determination of alpha-fluoro-beta-alanine and 5-fluorouracil in plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 688(1): 87 – 93.

7.       Licea-Perez, H., Wang, S. and Bowen, C. (2009). Development of a sensitive and selective LC-MS/MS method for the determination of alpha-fluoro-beta-alanine, 5-fluorouracil and capecitabine in human plasma. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(11-12): 1040 – 1046.

8.       Ndaw, S., Denis, F., Marsan, P., d'Almeida, A. and Robert, A. (2010). Biological monitoring of occupational exposure to 5-fluorouracil: urinary α-fluoro-β-alanine assay by high performance liquid chromatography tandem mass spectrometry in health care personnel. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 878(27): 2630 – 2634.

9.       Bos, R. P., Weissenberger, B. F. J. and Anzion, R. B. M. (1998). α-Fluoro-β-alanine in urine of workers occupationally exposed to 5-fluorouracil in a 5-fluorouracil producing factory. Biomarkers, 3(1): 81 – 87.

10.    Furuhata, T., Kawakami, M., Okita, K., Kimura, Y., Kihara, C., Tsuruma, T., Ohmura, T., Yamaguchi, K., Hata, F., Katsuramaki, T., Sasaki, K. and Hirata, K. (2006). Plasma level of a 5-fluorouracil metabolite, α-fluoro-β-alanine correlates with dihydropyrimidine dehydrogenase activity of peripheral blood mononuclear cells in 5-fluorouracil treated patients. Journal of Experimental and Clinical Cancer Research, 25(1): 79 – 82.

11.    Yoshida, J., Koda, S., Nishida, S., Nakano, H., Tei, G. and Kumagai, S. (2013). Association between occupational exposure and control measures for antineoplastic drugs in a pharmacy of a hospital. Annals of Occupational Hygiene, 57(2): 251 – 260.

12.    Poupeau, C., Tanguay, C., Plante, C., Gagné, S., Caron, N. and Bussières, J. F. (2016). Pilot study of biological monitoring of four antineoplastic drugs among Canadian healthcare workers. Journal of Oncology Pharmacy Practice, April:1-10.

13.    Handley, J. and Harris, C. M. (2001). Great ideas of a decade. Analytical Chemistry, 73(23): 660 – 666.

14.    Bianchi, F., Bisceglie, F., Dugheri, S., Arcangeli, G., Cupelli, V., Del Borrello, E., Sidisky, L. and Careri, M. (2014). Ionic liquid-based solid phase microextraction necklaces for the environmental monitoring of ketamine. Journal of Chromatography A, 1331: 1 – 9.

15.    Sassolini, A., Dominici, C., Saurini, M. T., Guidotti, M., Cenciarelli, O., Malizia, A., Ludovici, G. M., Gabbarini, V., Gabriele, J., Bellecci, C., Palombi, L. and Gaudio, P. (2015). Development of a SPME-GC-MS based methods for analysis of organochlorinated smoke agents in soil and its applications in a former military site samples. Malaysian Journal of Analytical Sciences, 19(6): 1179 – 1186.

16.    Kremser A., Jochmann, M. A., and Schmidt, T. C. (2016). SPME Arrow-evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Analytical and Bioanalytical Chemistry, 408(3): 943 – 952.

17.    Dugheri, S., Bonari, A., Pompilio, I., Mucci, N., Montalti, M. and Arcangeli, G. (2016). Development of new gas chromatography/mass spectrometry procedure for the determination of hexahydrophthalic anhydride in unsaturated polyester resins. RASĀYAN Journal of Chemistry, 9(4): 657 – 666.

18.    Gani, D., Hitchcock, P. B. and Young, D. W. (1985). Stereochemistry of catabolism of the DNA base thymine and of the anti-cancer drug 5-fluorouracil. Journal of the Chemical Society, Perkin Transactions, 1: 1363 – 1372.

19.    Miller, J. C. and Miller, J. N. (1984). Statistics for analytical chemistry, Ellis Horwood: Chinchester, 4: pp. 96.

20.    Zhang, Z. and Pawliszyn, J. (1993). Headspace solid-phase microextraction. Analytical Chemistry, 65(14): 1843 – 1852.

21.    Pacenti, M., Dugheri, S., Villanelli, F., Bartolucci, G., Calamai, L., Boccalon, P., Arcangeli, G., Vecchione, F., Alessi, P., Kikic, I. and Cupelli V. (2008). Determination of organic acids in urine by solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry previous 'in sample' derivatization with trimethyloxonium tetrafluoroborate.  Biomedical Chromatography, 22(10): 1155 – 1163.

22.    Hušek, P. (1998). Chloroformates in gas chromatography as general purpose derivatizing agents. Journal of Chromatography B: Biomedical Sciences and Applications, 717(1-2): 57 – 91.

23.    Hušek, P., Švagera, Z., Hanzlíková, D., Řimnáčová, L., Zahradníčková, H., Opekarová, I. and Šimek, P. (2016). Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. Journal of Chromatography A, 1443: 211 – 232.

24.    Bianchi, F., Dugheri, S., Musci, M., Bonacchi, A., Salvatori, E., Arcangeli, G., Cupelli,V., Lanciotti, M., Masieri, L., Serni, S., Carini, M., Careri, M. and Mangia, A. (2011). Fully automated solid-phase microextraction-fast gas chromatography-mass spectrometry method using a new ionic liquid column for high-throughput analysis of sarcosine and N-ethylglycine in human urine and urinary sediments. Analytica Chimica Acta, 707(1-2): 197 – 203.

25.    Naccarato, A., Gionfriddo, E., Sindona, G. and Tagarelli, A. (2014). Development of a simple and rapid solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Analytica Chimica Acta, 810: 17 –24.

26.    Makita, M., Yamamoto, S. and Kõno, M. (1976). Gas-liquid chromatographic analysis of protein amino acids as N-isobutyloxycarbonylamino acid methyl esters. Journal of Chromatography, 120(1): 129 –140.

27.    Makita, M., Yamamoto, S., Sakai, K. and Shiraishi, M. (1976). Gas-liquid chromatography of the N-isobutyloxycarbonyl methyl esters of non-protein amino acids. Journal of Chromatography, 124: 92 –96.

28.    Wang, J., Huang, Z. H., Gage, D. A. and Watson, J. T. (1994). Analysis of amino acids by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry: simultaneous derivatization of functional groups by an aqueous-phase chloroformate-mediated reaction. Journal of Chromatography A, 663(1): 71 – 78.

29.    Meerwein, H., Hinz, G., Hofmann, P., Kroning, E. and Pfeil, E. (1937). Über Tertiäre Oxoniumsalze, I. Journal für praktische Chemie, 147(10-12): 257 – 285.

30.    Liebich, H. M. and Gesele, E. (1999). Profiling of organic acids by capillary gas chromatography-mass spectrometry after direct methylation in urine using trimethyloxonium tetrafluoroborate. Journal of Chromatography A, 843(1-2): 237 –  245.

31.    Amazzini, S., Onor, M., Pagliano, E., Mester, Z., Campanella, B., Pitzalis, E., Bramanti, E. and D’Ulivo, A. (2015). Determination of thiocyanate in saliva by headspace gas chromatography-mass spectrometry, following a single-step aqueous derivatization with triethyloxonium tetrafluoroborate. Journal of Chromatography A, 1400: 124 – 130.

 




Previous                    Content                    Next