Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 801 - 809

DOI: https://doi.org/10.17576/mjas-2017-2104-06

 

 

 

CHARACTERIZATION, CALCULATION OF CALORIFIC VALUES, AND BIO-OIL PRODUCTION VIA THERMOCHEMICAL PROCESSES OF MUNICIPAL SOLID WASTE IN PERLIS, MALAYSIA

 

(Pencirian, Pengiraan Nilai – Nilai Kalorifik dan Pengeluaran Bio-Minyak Melalui Proses Termokimia Sisa Pepejal Perbandaran di Perlis, Malaysia)

 

Khairuddin Md Isa1,2*, Farizul Hafiz Kasim2, Umi Fazara Md Ali1, Radzuwan Ab Rashid3

 

1School of Environmental Engineering,

Universiti Malaysia Perlis, P.O Box 77, d/a Pejabat Pos Besar 01007, Kangar, Perlis, Malaysia

2Centre of Excellence for Biomass Utilisation,

Universiti Malaysia Perlis, Kompleks Pengajian Jejawi 3, 02600 Jejawi, Perlis, Malaysia

3Faculty of Languages and Communication,

Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author: khairudin@unimap.edu.my

 

 

Received: 9 January 2017; Accepted: 13 June 2017

 

 

Abstract

Municipal solid wastes (MSW) collected from Padang Siding Landfill, Perlis were segregated and characterized in the laboratory. The main components of MSW found are paper, plastic, glass and large proportion of organic waste. Moisture content was measured for all the components. Paper and yard wastes recorded the highest percentage of 26.7% and 28.8%, respectively.  Thermogravimetric analysis (TGA) shows that the thermal degradation of MSW samples ranged from 200 oC to 800 oC, indicating fast decomposition occurred at 370 oC, 430 oC and 700 oC.  Traditional method shows a lower error compared to the physical method in calculating the calorific values (CV) for MSW. Bio-oil production via fast pyrolysis route gave higher liquid yield of ~35% with high oxygen content of ~49 – 53%. Heavy oil recovered from hydrous pyrolysis experiments gave low yield of ~7 – 13%, however with low oxygen content of ~11 – 18%.

 

Keywords: Municipal solid waste, thermogravimetric analysis, calorific value, pyrolysis, hydrous pyrolysis

 

Abstrak

Sisa pepejal perbandaran (SPP) dikumpulkan dari tapak pelupusan Padang Siding, Perlis. Bahan buangan ini diasingkan dan dikategorikan di dalam makmal. Komponen utama MSW yang ditemui adalah kertas, plastik, kaca dan sebahagian besar sisa organik. Kandungan kelembapan diukur untuk semua komponen di mana kertas dan sisa dari laman telah mencatatkan peratus tertinggi sebanyak 26.7% dan 28.8% masing-masing. Analisis termogravimetrik menunjukkan degradasi terma sampel MSW adalah antara 200 oC hingga 800 oC, menunjukkan penguraian cepat berlaku pada 370 oC, 430 oC dan 700 oC. Kaedah tradisional menunjukkan ralat yang lebih rendah berbanding dengan kaedah fizikal dalam mengira nilai kalorifik  untuk SPP. Pengeluaran bio-minyak melalui laluan pirolisis pantas memberikan hasil cecair yang lebih tinggi  ~35% dengan kandungan oksigen yang tinggi ~ 49 – 53%. Minyak berat diperoleh daripada eksperimen pirolisis berair memberikan hasil yang rendah ~ 7 – 13%, walau bagaimanapun dengan kandungan oksigen yang rendah ~ 11 – 18%.

 

Kata kunci: Sisa pepejal perbandaran, analisa termogravimetrik, nilai kalorifik, pirolisis, pirolisis berair

 

References

1.       Hannan, M. A.,  Arebey, M.,  Basri, H. and  Begum, R. A. (2010).  Intelligent  solid waste bin monitoring and management system. Australian Journal of Basic and Applied Sciences, 4(10): 5314 – 5319.

2.       Cheng, H. and  Hu, Y. (2010).  Municipal  solid  waste  (MSW) as a renewable  source of  energy: Current and future practices in China. Bioresource Technology, 101(11): 3816 – 3824.

3.       Johari, A.,  Alkali, H.,  Hasyim, H., Ahmed, S. and  Mat, R.  (2014).  Municipal  solid  waste management and potential revenue from recycling in Malaysia. Modern Applied Science, 8(4): 37 – 49.

4.       Syed, A. K. S. A., Abidin, H. Z., Sulaiman, M. R., Khoo, K. H. and Ali, H. (2008). Combustion characteristics of Malaysian municipal solid waste and predictions of air flow in a rotary kiln incinerator. Journal of Material Cycles Waste Management, 10: 116 – 123.

5.       Abu-Qudais, M. and  Abu-Qdais, H. A.  (2000).  Energy  content of  municipal  solid  waste  in  Jordan and its potential utilization. Energy Conversion & Management, 41(9), 983 – 991.

6.       Isa, K. M., Ying, L. J., Saad, S. A., Kasim, F. H. and Rahim, M. A. A. (2016). Pyrolysis of oil palm fronds in a fixed bed reactor and optimisation of bio-oil using Box-Behnken Design.  Journal  of  Advanced  Research  in Fluid Mechanics and Thermal Sciences, 27(1), 12 – 18.

7.       Isa, K. M.,  Daud, S.,  Hamidin, N., Ismail, K. and  Kasim, F. K. (2011). Thermogravimetric  analysis  and  the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Industrial Crops and Products, 33(2): 481 – 487.

8.       Chen, X., Chen, Y., Yang, H., Chen, W., Wang, X. and Chen, H. (2017). Fast pyrolysis of cotton stalk biomass using calcium oxide, Bioresource Technology, 233: 15 – 20.

9.       Liamsanguan, C. and Gheewala, S. H. (2007). Environmental assessment of energy production from municipal solid waste incineration. The International Journal of Life Cycle Assessment, 12(7): 529 – 536.

10.    Kathirvale, S.  Yunus,  M. N. M.,  Sopian,  K.,  Samsuddin,  A. H. and  Rakmi,  A.R.  (2002).  Comprehensive characteristic of  the  municipal  solid  waste  generated  in  Kuala Lumpur.   In Proceedings  of  the   Regional Symposium on Environment and Natural Resources, Kuala Lumpur, Malaysia: pp. 359 – 368.

11.    Annual  Book of  ASTM  Standards,  D2974  volume  5.05.  The  American  Society  for  Testing and Material (ASTM), Philadelphia, PA.

12.    Ismail,  K.,  Zakaria, Z. and  Ishak,  M. A. M.  (2005).  Proceeding  of  22nd,  International  Pittsburgh Coal     Conference, Pittsburgh, USA.               

13.    Khan,  A. M. Z. and  Abu Ghrarah,  Z. H.  (1991).   New approach for estimating energy content of   municipal solid waste. Journal Environmental Engineering, 117(3), 376 – 380.

14.    Isa, Md. K., Snape, C. E., Uguna, C. and Meredith, W. (2015). High conversions of miscanthus using sub- and supercritical water above 400 oC. Journal of Analytical and Applied Pyrolysis, 113: 646 – 654.

15.    Hamatschek, E., Tee, S. S. and Faulstich, M. (2010). Current practice of municipal solid waste management in Malaysia and the potential for waste-to-energy implementation. ISWA World Congress, 1 – 13.

16.    Chai,  S. P. and  Zakaria, R. (2006).  Investigation  of combustion characteristic of municipal solid waste from Penang  State  Malaysia.  4th  International  Conference  on Combustion, Incineration/Pyrolysis and Emission Control: Waste to Wealth, Kyoto, Japan.

17.    Tchobanoglous, G.,  Theisen,  H. and  Vigil,  A. S.  (1993).   Integrated  solid  waste management, engineering principles and management issues. Mc Graw-Hill, New York.

18.    Garcia,  A.  N.,  Marcilla,  A.  and   Font,  R.   (1995).  Thermogravimetric  kinetic  study  of  the  pyrolysis of municipal solid waste. Thermochimica Acta, 254: 277 – 304.

19.    Shen, B. and Qinlei. (2006). Study on MSW catalytic combustion by TGA. Energy Conversion & Management, 47(11-12): 1429 – 1437.

20.    Kathirvale, S.,  Yunus, M. N. M.,  Sopian, K. and  Samsuddin, A. H. (2003).  Energy potential from municipal solid waste in Malaysia. Renewable Energy, 29(4): 559 – 567.

21.    Onsri, K.,  Prasassarakich, P. and  Ngamprasertsith, S.  (2010).  Co-liquefaction of coal and used tire in   super-critical water. Energy Power Engineering, 2: 95 – 102.

 




Previous                    Content                    Next