Malaysian Journal of
Analytical Sciences Vol 21 No 4 (2017): 810 - 819
DOI:
https://doi.org/10.17576/mjas-2017-2104-07
ULTRASOUND-ASSISTED SURFACTANT ENHANCED EMULSIFICATION
MICROEXTRACTION METHOD COUPLED WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY FOR
THE DETERMINATION OF SELECTED POLYCYCLIC AROMATIC HYDROCARBONS IN AQUEOUS
SAMPLES
(Kaedah Pengekstrakan Mikro Ultrabunyi dengan Bantuan Surfaktan
Meningkatkan Pengemulsian Bergabung dengan Kromatografi Gas-Spektrometri Jisim
Bagi Penentuan Polisiklik Aromatik Hidrokarbon Terpilih di dalam Sampel Akueus)
Siti Farahiyah Ahmad Shater 1, Noorfatimah Yahaya1*, Nur Nadhirah Mohamad Zain1, Sharlina
Mohamad1,
Farah Wahidah Mohd Hassan1,
Sazlinda Kamaruzaman2, Nor Suhaila Mohamad Hanapi3,
Mazidatulakmam Miskam4
1Integrative Medicine Cluster, Advanced Medical and Dental Institute
(AMDI),
Universiti Sains Malaysia,
Bertam, 13200 Kepala Batas, Penang, Malaysia
2Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia
3Faculty of Applied Sciences,
Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia
4School of Chemical Sciences,
Universiti Sains Malaysia,
11800 Penang, Malaysia
*Corresponding author: noorfatimah@usm.my
Received: 29
March 2017; Accepted: 20 June 2017
Abstract
A simple and rapid microextraction method termed as ultrasound-assisted
surfactant enhanced emulsification microextraction (UASEME) was developed for
the determination of fluoranthene (FLU) and phenanthrene (PHE) in aqueous
samples followed by gas chromatography-mass spectrometry (GC-MS). Six important
parameters, that affect the extraction efficiency of polycyclic aromatic
hydrocarbons (PAHs) were evaluated and the results were as follows; extraction
solvent (toluene), volume of
extraction solvent (30 µL), surfactant (Tween 20), volume of surfactant (15
µL), extraction time (2 minutes) and with no salt addition. Under the optimum
conditions, the method showed good linearity over the concentration range from
1 – 1000 µg L- 1 with correlation coefficients (R2
≥ 0.9932), acceptable limits of detection (0.3 µg L- 1) and limits
of quantification (1.0 µg L- 1) for both analytes. Good relative
recovery values, in the range of 91.75 – 104.1%, were obtained for tap water
samples. The relative standard deviations (RSDs) were 1.62 – 10.32% (n = 3). The proposed method was applied for
the determination of FLU and PHE in tap water and sugarcane juices.
Keywords: ultrasound-assisted,
surfactant, emulsification, polycyclic aromatic hydrocarbons, gas
chromatography-mass spectrometry
Abstrak
Satu kaedah pengekstrakan mikro yang mudah dan cepat disebut
kaedah ultrabunyi-dibantu surfaktan diperkuat pengemulsian dibangunkan bagi
penentuan fluorantin (FLU) dan fenantrin (PHE) di dalam sampel akueus diikuti
oleh kromatografi gas-spektrometri jisim (GC-MS). Enam parameter penting,
mempengaruhi kecekapan pengekstrakan hidrokarbon aromatik polisiklik (PAH)
telah dinilai dan keputusan adalah seperti berikut; pengekstrakan pelarut (toluena)
jumlah pelarut pengekstrakan (30 µL), surfaktan (Tween 20), jumlah surfaktan
(15 µl), masa pengekstrakan (2 minit) dan tanpa tambahan garam. Di bawah
keadaan yang optimum, kaedah ini menunjukkan kelinearan baik pada julat
kepekatan 1 –1000 μg L-1 dengan pekali korelasi (R2 ≥
0.9932) dan had pengesanan yang diterima (0.3 μg L-1) dan had
kuantifikasi (1.0 μg L- 1)
untuk kedua-dua analit. Nilai perolehan semula yang baik dalam julat 91.75 – 104.1%,
telah diperoleh bagi sampel air paip. Sisihan piawai relatif (RSDs) adalah 1.62
– 10.32% (n = 3). Kaedah yang
dicadangkan telah digunakan untuk penentuan FLU dan PHE dalam sampel air paip
dan jus tebu.
Kata kunci: ultrabunyi-dibantu, surfaktan, pengemulsian, polisiklik
aromatik hidrokarbon, kromatografi gas-spektrometri jisim
References
1.
Rezvani-Eivari, M., Amiri, A., Baghayeri, M. and
Ghaemi, F. (2016). Magnetized graphene layers synthesized on the carbon
nanofibers as novel adsorbent for the extraction of polycyclic aromatic
hydrocarbons from environmental water samples. Journal of Chromatography A,
1465: 1 - 8.
2.
Wu, Y., Xia, L., Chen, R. and Hu,
B. (2008). Headspace single drop microextraction combined with HPLC for the
determination of trace polycyclic aromatic hydrocarbons in environmental
samples. Talanta, 74 (4): 470 - 477.
3.
Hossain, M. A., Yeasmin, F.,
Mizanur Rahman, S. M. and Rana, M. S. (2016). Gas chromatograph-mass
spectrometry determination of carcinogenic naphthalene, anthracene,
phenanthrene and fluorene in the Bangsai river water of Bangladesh. Arabian Journal of Chemistry, 9: 109 -
113.
4.
Caruso, M. and Alaburda, J.
(2009). Optimization of the benzo (A) pyrene determination procedure in
cachaça. Journal of the Brazilian
Chemical Society, 20(3): 502 - 508.
5.
Da Porto, C. and Moret, S. (2007).
Comparison of polycyclic aromatic hydrocarbons (PAHs) between smoked marc
spirits and whiskies. Food and Chemical
Toxicology, 45(10): 2069 - 2071.
6.
Hosseini, M. H., Rezaee, M.,
Mashayekhi, H. A., Akbarian, S., Mizani, F. and Pourjavid, M. R. (2012).
Determination of polycyclic aromatic hydrocarbons in soil samples using
flotation-assisted homogeneous liquid-liquid microextraction. Journal of
Chromatography A, 1265: 52 - 56.
7.
Reza, M., Zanjani, K., Yamini, Y.,
Shariati, S. and Ake, J. (2007). A new liquid-phase microextraction method based
on solidification of floating organic drop. Analytica
Chimica Acta, 585(2): 286 - 293.
8.
Hou, L. and Lee, H. K. (2002).
Application of static and dynamic liquid-phase microextraction in the
determination of polycyclic aromatic hydrocarbons. Journal of Chatomatography
A, 976(1-2): 377 - 385.
9.
Cacho, J. I, Campillo, N., Viñas,
P. and Hernández-córdoba, M. (2016). Evaluation of the contamination of spirits
by polycyclic aromatic hydrocarbons using ultrasound-assisted emulsification
microextraction coupled to gas chromatography – mass spectrometry. Food
Chemistry, 190: 324 - 330.
10. Wang, Y., Kwok, Y. C., He, Y. and Lee, H. K. (1998).
Application of dynamic liquid-phase microextraction to the analysis of
chlorobenzenes in water by using a conventional microsyringe. Analytical
Chemistry, 70 (21): 4610 - 4614.
11. Regueiro, J., Llompart, M., Garcia-Jares, C.,
Garcia-Monteagudo, J. C. and Cela, R. (2008). Ultrasound-assisted
emulsification-microextraction of emergent contaminants and pesticides in
environmental waters. Journal of Chromatography A, 1190 (1-2): 27 - 38.
12. Fontana, A. R., Wuilloud, R. G., Martínez, L. D. and
Altamirano, J. C. (2009). Simple approach based on ultrasound-assisted
emulsification-microextraction for determination of polibrominated flame
retardants in water samples by gas chromatography-mass spectrometry. Journal
of Chromatography A, 1216 (1): 147 - 153.
13. Wu, Q., Chang, Q. and Wu, C. (2010).
Ultrasound-assisted surfactant-enhanced emulsification microextraction for the
determination of carbamate pesticides in water samples by high performance
liquid chromatography. Journal of Chromatography A, 1217(11): 1773 -
1778.
14. Veyrand, B., Brosseaud, A. and Sarcher, L. (2013).
Development of a novel ultrasound-assisted surfactant-enhanced emulsification
microextraction method and its application to the analysis of eleven polycyclic
aromatic hydrocarbons at trace levels in water. Journal of Chromatography A,
391(2): 363 - 393.
15. Saleh, A., Yamini, Y., Faraji, M., Rezaee, M. and
Ghambarian, M. (2009). Ultrasound-assisted emulsification microextraction
method based on applying low density organic solvents followed by gas chromatography
analysis for the determination of polycyclic aromatic hydrocarbons in water
samples. Journal of Chromatography A, 1216(39): 6673 - 6679.
16. Ozcan, S., Tor, A. and Aydin, M. E. (2010).
Determination of polycyclic aromatic hydrocarbons in waters by
ultrasound-assisted emulsification-microextraction and gas chromatography-mass
spectrometry. Analytica Chimica Acta, 665(2): 193 - 199.
17. Sanagi, M. M., Abbas, H. H., Ibrahim, W. A. W. and
Aboul-Enien, H. Y. (2012). Dispersive liquid-liquid microextraction method
based on solidification of floating organic droplet for the determination of
triazine herbicides in water and sugarcane samples. Food Chemistry,
133(2): 557 - 562.
18. Tseng, W., Chen, P. and Huang, S. (2014). Optimization
of two different dispersive liquid – liquid microextraction methods followed by
gas chromatography – mass spectrometry determination for polycyclic aromatic
hydrocarbons (PAHs) analysis in water. Talanta, 120: 425 - 432.
19. Mukdasai, S., Thomas, C. and Srijaranai, S. (2014).
Two-step microextraction combined with high performance liquid chromatographic
analysis of pyrethroids in water and vegetable samples. Talanta, 120:
289 - 296.
20. ICH Harmonised Tripartite Guideline Validation of
Analytical Procedures. (1994). Text and Methodology.
https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf
[Access online 20 January 2015].
21. King, A. J., Readman, J. W. and Zhou, J. L. (2004).
Determination of polycyclic aromatic hydrocarbons in water by solid-phase
microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta,
523(2): 259 - 267.
22. Bourdat-Deschamps, M., Daudin, J. J. and Barriuso, E.
(2007). An experimental design approach to optimise the determination of
polycyclic aromatic hydrocarbons from rainfall water using stir bar sorptive
extraction and high performance liquid chromatography-fluorescence detection. Journal
of Chromatography A, 1167(2): 143 - 153.
23. Sanagi, M. M., Loh, S. H., Wan Ibrahim, W. A., Hasan,
M. N. (2012). Agarose film liquid phase microextraction combined with gas
chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons
in water. Journal of Chromatography A, 1262: 43 - 48.
24. Shariati-Feizabadi, S., Yamini, Y. and Bahramifar, N.
(2003). Headspace solvent microextraction and gas chromatographic determination
of some polycyclic aromatic hydrocarbons in water samples. Analytica Chimica
Acta, 489(1): 21 - 31.