Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 810 - 819

DOI: https://doi.org/10.17576/mjas-2017-2104-07

 

 

 

ULTRASOUND-ASSISTED SURFACTANT ENHANCED EMULSIFICATION MICROEXTRACTION METHOD COUPLED WITH GAS CHROMATOGRAPHY-MASS SPECTROMETRY FOR THE DETERMINATION OF SELECTED POLYCYCLIC AROMATIC HYDROCARBONS IN AQUEOUS SAMPLES

 

(Kaedah Pengekstrakan Mikro Ultrabunyi dengan Bantuan Surfaktan Meningkatkan Pengemulsian Bergabung dengan Kromatografi Gas-Spektrometri Jisim Bagi Penentuan Polisiklik Aromatik Hidrokarbon Terpilih di dalam Sampel Akueus)

 

Siti Farahiyah Ahmad Shater 1, Noorfatimah Yahaya1*,  Nur Nadhirah Mohamad Zain1, Sharlina Mohamad1,

Farah Wahidah Mohd Hassan1, Sazlinda Kamaruzaman2, Nor Suhaila Mohamad Hanapi3,

Mazidatulakmam Miskam4

 

1Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI),

Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia

2Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

3Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Penang, Malaysia

 

*Corresponding author: noorfatimah@usm.my

 

 

Received: 29 March 2017; Accepted: 20 June 2017

 

 

Abstract

A simple and rapid microextraction method termed as ultrasound-assisted surfactant enhanced emulsification microextraction (UASEME) was developed for the determination of fluoranthene (FLU) and phenanthrene (PHE) in aqueous samples followed by gas chromatography-mass spectrometry (GC-MS). Six important parameters, that affect the extraction efficiency of polycyclic aromatic hydrocarbons (PAHs) were evaluated and the results were as follows; extraction solvent (toluene), volume of extraction solvent (30 µL), surfactant (Tween 20), volume of surfactant (15 µL), extraction time (2 minutes) and with no salt addition. Under the optimum conditions, the method showed good linearity over the concentration range from 1 – 1000 µg L- 1 with correlation coefficients (R2 ≥ 0.9932), acceptable limits of detection (0.3 µg L- 1) and limits of quantification (1.0 µg L- 1) for both analytes. Good relative recovery values, in the range of 91.75 – 104.1%, were obtained for tap water samples. The relative standard deviations (RSDs) were 1.62 – 10.32% (n = 3). The proposed method was applied for the determination of FLU and PHE in tap water and sugarcane juices.

 

Keywords:    ultrasound-assisted, surfactant, emulsification, polycyclic aromatic hydrocarbons, gas chromatography-mass spectrometry

 

 

Abstrak

Satu kaedah pengekstrakan mikro yang mudah dan cepat disebut kaedah ultrabunyi-dibantu surfaktan diperkuat pengemulsian dibangunkan bagi penentuan fluorantin (FLU) dan fenantrin (PHE) di dalam sampel akueus diikuti oleh kromatografi gas-spektrometri jisim (GC-MS). Enam parameter penting, mempengaruhi kecekapan pengekstrakan hidrokarbon aromatik polisiklik (PAH) telah dinilai dan keputusan adalah seperti berikut; pengekstrakan pelarut (toluena) jumlah pelarut pengekstrakan (30 µL), surfaktan (Tween 20), jumlah surfaktan (15 µl), masa pengekstrakan (2 minit) dan tanpa tambahan garam. Di bawah keadaan yang optimum, kaedah ini menunjukkan kelinearan baik pada julat kepekatan 1 –1000 μg L-1 dengan pekali korelasi (R2 ≥ 0.9932) dan had pengesanan yang diterima (0.3 μg L-1) dan had kuantifikasi (1.0   μg L- 1) untuk kedua-dua analit. Nilai perolehan semula yang baik dalam julat 91.75 – 104.1%, telah diperoleh bagi sampel air paip. Sisihan piawai relatif (RSDs) adalah 1.62 – 10.32% (n = 3). Kaedah yang dicadangkan telah digunakan untuk penentuan FLU dan PHE dalam sampel air paip dan jus tebu.

 

Kata kunci:    ultrabunyi-dibantu, surfaktan, pengemulsian, polisiklik aromatik hidrokarbon, kromatografi gas-spektrometri jisim

 

References

1.       Rezvani-Eivari, M., Amiri, A., Baghayeri, M. and Ghaemi, F. (2016). Magnetized graphene layers synthesized on the carbon nanofibers as novel adsorbent for the extraction of polycyclic aromatic hydrocarbons from environmental water samples. Journal of Chromatography A, 1465: 1 - 8.

2.       Wu, Y., Xia, L., Chen, R. and Hu, B. (2008). Headspace single drop microextraction combined with HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental samples. Talanta, 74 (4): 470 - 477.

3.       Hossain, M. A., Yeasmin, F., Mizanur Rahman, S. M. and Rana, M. S. (2016). Gas chromatograph-mass spectrometry determination of carcinogenic naphthalene, anthracene, phenanthrene and fluorene in the Bangsai river water of Bangladesh. Arabian Journal of Chemistry, 9: 109 - 113.

4.       Caruso, M. and Alaburda, J. (2009). Optimization of the benzo (A) pyrene determination procedure in cachaça. Journal of the Brazilian Chemical Society, 20(3): 502 - 508.

5.       Da Porto, C. and Moret, S. (2007). Comparison of polycyclic aromatic hydrocarbons (PAHs) between smoked marc spirits and whiskies. Food and Chemical Toxicology, 45(10): 2069 - 2071.

6.       Hosseini, M. H., Rezaee, M., Mashayekhi, H. A., Akbarian, S., Mizani, F. and Pourjavid, M. R. (2012). Determination of polycyclic aromatic hydrocarbons in soil samples using flotation-assisted homogeneous liquid-liquid microextraction. Journal of Chromatography A, 1265: 52 - 56.

7.       Reza, M., Zanjani, K., Yamini, Y., Shariati, S. and Ake, J. (2007). A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica Chimica Acta, 585(2): 286 - 293.

8.       Hou, L. and Lee, H. K. (2002). Application of static and dynamic liquid-phase microextraction in the determination of polycyclic aromatic hydrocarbons. Journal of Chatomatography A, 976(1-2): 377 - 385.

9.       Cacho, J. I, Campillo, N., Viñas, P. and Hernández-córdoba, M. (2016). Evaluation of the contamination of spirits by polycyclic aromatic hydrocarbons using ultrasound-assisted emulsification microextraction coupled to gas chromatography – mass spectrometry. Food Chemistry, 190: 324 - 330.

10.    Wang, Y., Kwok, Y. C., He, Y. and Lee, H. K. (1998). Application of dynamic liquid-phase microextraction to the analysis of chlorobenzenes in water by using a conventional microsyringe. Analytical Chemistry, 70 (21): 4610 - 4614.

11.    Regueiro, J., Llompart, M., Garcia-Jares, C., Garcia-Monteagudo, J. C. and Cela, R. (2008). Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. Journal of Chromatography A, 1190 (1-2): 27 - 38.

12.    Fontana, A. R., Wuilloud, R. G., Martínez, L. D. and Altamirano, J. C. (2009). Simple approach based on ultrasound-assisted emulsification-microextraction for determination of polibrominated flame retardants in water samples by gas chromatography-mass spectrometry. Journal of Chromatography A, 1216 (1): 147 - 153.

13.    Wu, Q., Chang, Q. and Wu, C. (2010). Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamate pesticides in water samples by high performance liquid chromatography. Journal of Chromatography A, 1217(11): 1773 - 1778.

14.    Veyrand, B., Brosseaud, A. and Sarcher, L. (2013). Development of a novel ultrasound-assisted surfactant-enhanced emulsification microextraction method and its application to the analysis of eleven polycyclic aromatic hydrocarbons at trace levels in water. Journal of Chromatography A, 391(2): 363 - 393.

15.    Saleh, A., Yamini, Y., Faraji, M., Rezaee, M. and Ghambarian, M. (2009). Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. Journal of Chromatography A, 1216(39): 6673 - 6679.

16.    Ozcan, S., Tor, A. and Aydin, M. E. (2010). Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography-mass spectrometry. Analytica Chimica Acta, 665(2): 193 - 199.

17.    Sanagi, M. M., Abbas, H. H., Ibrahim, W. A. W. and Aboul-Enien, H. Y. (2012). Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chemistry, 133(2): 557 - 562.

18.    Tseng, W., Chen, P. and Huang, S. (2014). Optimization of two different dispersive liquid – liquid microextraction methods followed by gas chromatography – mass spectrometry determination for polycyclic aromatic hydrocarbons (PAHs) analysis in water. Talanta, 120: 425 - 432.

19.    Mukdasai, S., Thomas, C. and Srijaranai, S. (2014). Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples. Talanta, 120: 289 - 296.

20.    ICH Harmonised Tripartite Guideline Validation of Analytical Procedures. (1994). Text and Methodology. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf [Access online 20 January 2015].

21.    King, A. J., Readman, J. W. and Zhou, J. L. (2004). Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta, 523(2): 259 - 267.

22.    Bourdat-Deschamps, M., Daudin, J. J. and Barriuso, E. (2007). An experimental design approach to optimise the determination of polycyclic aromatic hydrocarbons from rainfall water using stir bar sorptive extraction and high performance liquid chromatography-fluorescence detection. Journal of Chromatography A, 1167(2): 143 - 153.

23.    Sanagi, M. M., Loh, S. H., Wan Ibrahim, W. A., Hasan, M. N. (2012). Agarose film liquid phase microextraction combined with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in water. Journal of Chromatography A, 1262: 43 - 48.

24.    Shariati-Feizabadi, S., Yamini, Y. and Bahramifar, N. (2003). Headspace solvent microextraction and gas chromatographic determination of some polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 489(1): 21 - 31.

 

 




Previous                    Content                    Next