Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 793 - 800

DOI: https://doi.org/10.17576/mjas-2017-2104-05

 

 

 

EFFECT OF NON-IONIC SURFACTANTS TO THE Al(III)-MORIN COMPLEX AND ITS APPLICATION IN DETERMINATION OF Al(III) IONS: A PRELIMINARY STUDY

 

(Kesan Surfaktan Tak-Ionik Kepada Kompleks Al(III)-Morin dan Aplikasinya dalam Penentuan Ion Al(III): Satu Kajian Awal)

 

Faiz Bukhari Mohd Suah1*, Musa Ahmad2, Faizatul Shimal Mehamod3

 

1School of Chemical Sciences,

Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

2Faculty of Science & Technology,

Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

3School of Fundamental Science,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: fsuah@usm.my

 

 

Received: 5 October 2016; Accepted: 11 May 2017

 

 

Abstract

A simple and sensitive spectrofluorimetric method for the determination of Al(III) based on the formation of Al-Morin-Triton X-100 ternary complex is described. The effect of other non-ionic surfactants, such as Tween 80, Tween 20 and octylglucoside (OG) on fluorescence analysis were also studied. The addition of Triton X-100 makes feasible the fluorimetric determination of submicrogram quantities of Al(III). The complex was excited at 410 nm and the fluorescence signal was measured at 495 nm. Maximum fluorescence signal was produced at pH 4.0 (acetic acid-acetate buffer), with 0.6% Triton X-100 and 1.35 × 10-3 mol L-1 Morin. The calibration graph is linear up to 7 mg L-1 and the detection limit is 0.022 mg L−1. The relative standard deviation is 1.81% for Al(III) at 5 mg L-1. It was found that Zn(II) and F- produced highest interference.

 

Keywords:  aluminum determination, fluorescence analysis, non-ionic surfactants, Triton X-100, Morin

 

Abstrak

Satu kaedah penentuan Al(III) secara spektrofluorimetri yang mudah dan sensitif berasaskan kepada pembentukan kompleks ternari Al-Morin-Triton X-100 dilaporkan. Kesan beberapa surfaktan tak-ionik yang lain seperti Tween 20, Tween 80 dan ositilglukos (OG) terhadap analisis berpendarflour turut dikaji. Penambahan Triton X-100 telah membolehkan penentuan secara pendarflour Al(III) dijalankan sehingga kepada kuantiti submikrogram. Kompleks teruja pada 410 nm dan isyarat pendarflour diukur pada 495 nm. Isyarat pendarflour maksimum dihasilkan pada pH 4.0 (menggunakan penimbal asetik asid-asetat), dengan 0.6% Triton X-100 dan 1.35 x 10-3 mol L-1 morin. Graf kalibrasi adalah linear sehingga 7 mg L-1 dan had pengesanan pula adalah 0.022 mg L−1. Sisihan piawai relatif bagi penentuan 5 mg L-1 Al(III) ialah 1.81%. Didapati juga ion Zn(II) dan F- menghasilkan gangguan bacaan yang tertinggi.

 

Kata Kunci:  penentuan aluminum, analisis fluorimetrik, surfaktan tak-ionik, Triton X-100, Morin

 

References

1.       Tria, J. C. V. Butler, E. C. V. Haddad, P. R. and Bowie, A. R. (2007). Determination of aluminium in natural water samples. Analytica Chimica Acta, 588: 153 – 165.

2.       Dilleen, J. W. Birch, B. J. and Hagget, B. G. D. (1999). Electrochemical detection of aluminium using single-use sensors. Analytical Communications, 36: 363 – 365.

3.       Flaten, T. P. (2001). Aluminium as a risk factor in Alzheimer’s disease,   with emphasis on drinking water. Brain Research Bulletin, 55(2): 187 – 196.

4.       Ghavami, R., Najafi, A. and Hemmateenejad, B. (2008). Chemometrics-assisted spectrophotometric methods for simultaneous determination and complexation study of Fe(III), Al(III) and V(V) with morin in micellar media. Spectrochima Acta Part A, 70: 824 – 834.

5.       Carpani, I. Scavetta, E. and Tonelli, D. (2004). Spectrophotometric determination of aluminium and nickel. Annali di Chimica, 94: 365 – 372.

6.       Guray, T. Uysal, U. D. Gedikbey, T. and Huseyinli, A. A. (2005). 2, 2’, 3,4-tetrahydroxy-3’-sulpho-5’-nitroazobenzene for spectrophotometric determination of aluminium in pharmaceutical suspensions and granite. Analytical Chimica Acta, 545: 107 – 112.

7.       Hernandez, F. H. and Esriche, J. M. (1984). Fluorimetric determination of aluminium with morin after extraction with isobutyl methyl ketone. Part I. Fluorescence of the aluminium-morin complex in an isobutyl methyl ketone- ethanol- water system. Analyst, 109: 1585 – 1588.

8.       Brach-Papa, C. Coulomb, B. Théraulaz, F. Van Loot, P. Boudenne, J. L. Branger, C. and Margaillan, C. (2004). Fluorimetric determination of aluminium in water by sequential injection through column extraction. Analytical and Bioanalytical Chemistry, 378: 1652 – 1658.

9.       Al-Kindy, S. M. Z. Suliman, F. O. and Salama, S. B. (2003). A sequential injection method for the determination of aluminium in drinking water using fluorescence enhancement of the aluminum–morin complex in micellar media. Microchemical Journal, 74: 173 – 179.

10.    Alonso-Mateos, A. Almendral-Parra, M. J. Curto-Serrano, Y and  Rodríguez-Martín, F. J. (2008). Online monitoring of aluminium in drinking water with fluorimetric detection. Journal of Fluorescence, 18: 183 – 192.

11.    Sanz-Medel, A. De La Campa, R. F. and Garcia Alonso, J. I. (1987). Metal chelate fluorescence enhancement in micellar media: mechanisms of surfactant action. Analyst, 112: 493 – 497.

12.    Hinze, W. L. Singh, H. N. Baba, Y. and Harvey, N. G. (1984). Micellar enhanced analytical fluorimetry. Trends in Analytical Chemistry, 3: 193 – 199.

13.    Howard, A. G. Coxhead, A. J. Potter, I. A. and Watt, A. P. (1986). Determination of dissolved aluminium by the micelle-enhanced fluorescence of its lumogallion complex. Analyst, 111: 1379 –1382.

14.    Diaz Garcia, M. E. and Sanz-Medel, A. (1986). Dye-surfactant interactions: A review. Talanta, 33: 255 – 264.

15.    Nakahara, Y. Kida, T. Nakatsuji, Y. and Akashi, M. (2004). A novel fluorescent indicator for Ba2+ in aqueous micellar solutions. Chemical Communications, 2: 224 – 225.

16.    Simoncic, B. and Kert, M. (2008). Influence of the chemical structure of dyes and surfactants on their interactions in binary and ternary mixture. Dyes and Pigments, 76: 104 – 112.

17.    Carrion Dominguez, J. L. and Cirugeda, M. D. L. G. (1987). Spectroscopic study of the aluminium/lumogallion system in the presence of non-ionic surfactants. Analytical Chimica Acta, 198: 53 – 61.

18.    Escriche, J. M., Cirugeda, M. D. L. G. and Hernandez, F. H. (1983). Increase in the sensitivity of the fluorescent reaction of the complexing of aluminium with morin using surfactant agents. Analyst, 108: 1386 – 1391.

19.    Hernandez, F. H. Esriche, J. M. and Andreu, M. T. G. (1986). Enhancement of the fluorescence of the zinc-morin complex by non-ionic surfactant. Talanta, 33: 537 – 540.

20.    Ren, J. L. Zhang, J. Luo, J. Q. Pei, X. K. and Jiang, Z. X. (2001). Improved fluorimetric determination of dissolved aluminium by micelle-enhanced lumogallion complex in natural waters. Analyst, 126: 698 – 702.

21.    Zhang, J. Xu, H. and Ren, J. L. (2000). Fluorimetric determination of dissolved aluminium in natural waters after liquid–liquid extraction into n-hexanol. Analytical Chimica Acta, 405: 31 – 42.

 

 




Previous                    Content                    Next