Malaysian Journal of Analytical Sciences
Vol 21 No 4 (2017): 793 - 800
DOI:
https://doi.org/10.17576/mjas-2017-2104-05
EFFECT
OF NON-IONIC SURFACTANTS TO THE Al(III)-MORIN COMPLEX AND ITS APPLICATION IN
DETERMINATION OF Al(III) IONS: A PRELIMINARY STUDY
(Kesan Surfaktan Tak-Ionik Kepada Kompleks
Al(III)-Morin dan Aplikasinya dalam Penentuan Ion Al(III): Satu Kajian Awal)
Faiz Bukhari Mohd Suah1*, Musa Ahmad2,
Faizatul Shimal Mehamod3
1School of Chemical Sciences,
Universiti Sains
Malaysia, 11800 Minden, Pulau Pinang, Malaysia
2Faculty of Science & Technology,
Universiti Sains
Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
3School of Fundamental Science,
Universiti
Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
*Corresponding author: fsuah@usm.my
Received: 5
October 2016; Accepted: 11 May 2017
Abstract
A
simple and sensitive spectrofluorimetric method for the determination of
Al(III) based on the formation of Al-Morin-Triton X-100 ternary complex is
described. The effect of other non-ionic surfactants, such as Tween 80, Tween
20 and octylglucoside (OG) on fluorescence analysis were also studied. The
addition of Triton X-100 makes feasible the fluorimetric determination of
submicrogram quantities of Al(III). The complex was excited at 410 nm and the
fluorescence signal was measured at 495 nm. Maximum fluorescence signal was
produced at pH 4.0 (acetic acid-acetate buffer), with 0.6% Triton X-100 and
1.35 × 10-3 mol L-1 Morin. The calibration graph is
linear up to 7 mg L-1 and the detection limit is 0.022 mg L−1.
The relative standard deviation is 1.81% for Al(III) at 5 mg L-1. It
was found that Zn(II) and F- produced highest interference.
Keywords: aluminum determination, fluorescence
analysis, non-ionic surfactants, Triton X-100, Morin
Abstrak
Satu kaedah
penentuan Al(III) secara spektrofluorimetri yang mudah dan sensitif berasaskan
kepada pembentukan kompleks ternari Al-Morin-Triton X-100 dilaporkan. Kesan
beberapa surfaktan tak-ionik yang lain seperti Tween 20, Tween 80 dan
ositilglukos (OG) terhadap analisis berpendarflour turut dikaji. Penambahan
Triton X-100 telah membolehkan penentuan secara pendarflour Al(III) dijalankan
sehingga kepada kuantiti submikrogram. Kompleks teruja pada 410 nm dan isyarat
pendarflour diukur pada 495 nm. Isyarat pendarflour maksimum dihasilkan pada pH
4.0 (menggunakan penimbal asetik asid-asetat), dengan 0.6% Triton X-100 dan
1.35 x 10-3 mol L-1 morin. Graf kalibrasi adalah linear
sehingga 7 mg L-1 dan had pengesanan pula adalah 0.022 mg L−1.
Sisihan piawai relatif bagi penentuan 5 mg L-1 Al(III) ialah 1.81%.
Didapati juga ion Zn(II) dan F- menghasilkan gangguan bacaan yang
tertinggi.
Kata Kunci: penentuan
aluminum, analisis fluorimetrik, surfaktan tak-ionik, Triton X-100, Morin
References
1. Tria, J. C. V. Butler, E.
C. V. Haddad, P. R. and Bowie, A. R. (2007). Determination of aluminium in
natural water samples. Analytica Chimica
Acta, 588: 153 – 165.
2. Dilleen, J. W. Birch, B. J.
and Hagget, B. G. D. (1999). Electrochemical detection of aluminium using
single-use sensors. Analytical
Communications, 36: 363 – 365.
3. Flaten, T. P. (2001).
Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin, 55(2): 187 –
196.
4. Ghavami, R., Najafi, A. and
Hemmateenejad, B. (2008). Chemometrics-assisted spectrophotometric methods
for simultaneous determination and complexation study of Fe(III), Al(III) and
V(V) with morin in micellar media. Spectrochima
Acta Part A, 70: 824 – 834.
5. Carpani, I. Scavetta, E. and Tonelli, D. (2004).
Spectrophotometric determination of aluminium and nickel. Annali di Chimica, 94: 365 – 372.
6. Guray, T. Uysal, U. D.
Gedikbey, T. and Huseyinli, A. A. (2005). 2, 2’,
3,4-tetrahydroxy-3’-sulpho-5’-nitroazobenzene for spectrophotometric
determination of aluminium in pharmaceutical suspensions and granite. Analytical Chimica Acta, 545: 107 – 112.
7. Hernandez, F. H. and Esriche, J. M. (1984). Fluorimetric
determination of aluminium with morin after extraction with isobutyl methyl
ketone. Part I. Fluorescence of the aluminium-morin complex in an isobutyl
methyl ketone- ethanol- water system. Analyst,
109: 1585 – 1588.
8. Brach-Papa, C. Coulomb, B.
Théraulaz, F. Van Loot, P. Boudenne, J. L. Branger, C. and Margaillan, C.
(2004). Fluorimetric determination of aluminium in water by sequential
injection through column extraction. Analytical
and Bioanalytical Chemistry, 378: 1652 – 1658.
9. Al-Kindy, S. M. Z. Suliman,
F. O. and Salama, S. B. (2003). A sequential injection method for the
determination of aluminium in drinking water using fluorescence enhancement of
the aluminum–morin complex in micellar media. Microchemical Journal, 74: 173 – 179.
10. Alonso-Mateos, A.
Almendral-Parra, M. J. Curto-Serrano, Y and
Rodríguez-Martín, F. J. (2008). Online monitoring of aluminium in drinking
water with fluorimetric detection. Journal of Fluorescence, 18: 183 – 192.
11. Sanz-Medel, A. De La Campa, R.
F. and Garcia Alonso, J. I. (1987). Metal chelate
fluorescence enhancement in micellar media: mechanisms of surfactant action. Analyst,
112: 493 – 497.
12. Hinze, W. L. Singh, H. N.
Baba, Y. and Harvey, N. G. (1984). Micellar enhanced analytical fluorimetry. Trends in Analytical Chemistry, 3: 193 –
199.
13. Howard, A. G. Coxhead, A.
J. Potter, I. A. and Watt, A. P. (1986). Determination of dissolved aluminium
by the micelle-enhanced fluorescence of its lumogallion complex. Analyst, 111: 1379 –1382.
14. Diaz Garcia, M.
E. and Sanz-Medel, A. (1986). Dye-surfactant interactions: A review. Talanta, 33: 255 – 264.
15. Nakahara, Y.
Kida, T. Nakatsuji, Y. and Akashi, M. (2004). A novel fluorescent indicator for
Ba2+ in aqueous micellar solutions. Chemical Communications, 2: 224 – 225.
16. Simoncic, B. and Kert, M.
(2008). Influence
of the chemical structure of dyes and surfactants on their interactions in
binary and ternary mixture. Dyes and Pigments, 76: 104 – 112.
17. Carrion Dominguez, J. L. and Cirugeda, M. D. L. G. (1987). Spectroscopic study of the
aluminium/lumogallion system in the presence of non-ionic surfactants. Analytical Chimica Acta, 198: 53 – 61.
18. Escriche, J. M.,
Cirugeda, M. D. L. G. and
Hernandez, F. H. (1983). Increase in the sensitivity of the fluorescent
reaction of the complexing of aluminium with morin using surfactant agents. Analyst, 108: 1386 – 1391.
19. Hernandez, F. H.
Esriche, J. M. and Andreu, M. T. G. (1986). Enhancement of the fluorescence of
the zinc-morin complex by non-ionic surfactant. Talanta, 33: 537 – 540.
20. Ren, J. L.
Zhang, J. Luo, J. Q. Pei, X. K. and Jiang, Z. X. (2001). Improved fluorimetric determination of dissolved
aluminium by micelle-enhanced lumogallion complex in natural waters. Analyst, 126: 698 – 702.
21. Zhang, J. Xu, H.
and Ren, J. L. (2000). Fluorimetric determination of dissolved aluminium in
natural waters after liquid–liquid extraction into n-hexanol. Analytical Chimica Acta, 405: 31 – 42.