Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 972 - 978

DOI: https://doi.org/10.17576/mjas-2017-2104-24

 

 

 

PERCENTAGE DIFFERENCE OF RESISTIVITY OF NANOPARTICLES IN DETERMINING CRUDE OIL USING SAND-PACK EXPERIMENTAL METHOD

 

(Peratusan Perbezaan Kerintangan Nanopartikel Dalam Penentuan Minyak Mentah Mengunakan Kaedah Ujikaji Pek Pasir)

 

Mohd Zulkifli Mohamad Noor1*, Mariyamni Awang2, Sonny Irawan2

 

1Faculty of Chemical Engineering & Natural Resources,

Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

2Department of Petroleum Engineering,

Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia

 

*Corresponding author:  mzulkifli@ump.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

Nanoparticle with its nanoscale can be used as a data collector in every part of the development of the petroleum field. By having a hydrophilic condition for the nanoparticles, it can move to the targeted area in the water zone. The hydrophilic condition will differentiate between oil zone and water zone. The objective of the study is to use the hydrophilic nanoparticles to detect the oil and water zones using sand-pack displacement test. An experiment using the sand-pack method was done to show that the hydrophilic nanoparticles can be used to collect data. The nanoparticles used were aluminum oxide (Al2O3) and nickel zinc ferrite oxide (NiZnFeO). The results showed that for NiZnFeO, at 3-inch distance from the injection point, the percentage difference increased from 15% to 25%, while for Al2O3, the nanoparticles also showed the same increment but different in values, which were from 6% to 15%. This is shown by the significant change of resistivity percentage at the 3-inch distance. To conclude, the use of both types of nanoparticles that have hydrophilic nanoparticles can show the significant changes for resistivity at internal short front face of well reservoir with oil zone only.

 

Keywords:  nanoparticles, formation characterization, sand-pack displacement, resistivity

 

Abstrak

Nanopartikel dengan skala nano boleh digunakan sebagai pengumpul data di setiap bahagian pembangunan bidang petroleum. Dengan adanya keadaan hidrofilik untuk nanopartikel, ia boleh bergerak ke kawasan yang disasarkan di zon air. Keadaan hidrofilik akan membezakan antara zon minyak dan zon air. Objektif kajian ini adalah untuk menggunakan nanopartikel hidrofilik untuk mengesan zon minyak dan air menggunakan ujian pek pasir. Satu eksperimen menggunakan kaedah pek pasir dilakukan untuk menunjukkan bahawa nanopartikel hidrofilik boleh digunakan dalam mengumpul data. Nanopartikel yang digunakan adalah aluminium oksida (Al2O3) dan nikel zink ferit oksida (NiZnFeO). Hasil kajian menunjukkan bahawa untuk NiZnFeO, pada jarak 3 inci dari sudut suntikan, perbezaan peratusan meningkat daripada 15% kepada 25%, manakala bagi Al2O3, nanopartikel juga menunjukkan kenaikan yang sama tetapi berbeza dalam nilai iaitu dari 6% kepada 15%. Ini ditunjukkan oleh perubahan yang ketara peratusan kerintangan pada jarak 3 inci. Kesimpulannya, penggunaan kedua-dua jenis nanopartikel yang mempunyai nanopartikel hidrofilik boleh menunjukkan perubahan signifikan bagi kerintangan muka depan pendek dalaman takungan baik dengan zon minyak sahaja.

 

Kata kunci:  nanopartikel, penentuan formasi, pengaliran pek pasir, kerintangan

 

References

1.       Kong, X. and Ohadi, M. (2010). Applications of micro and nano technologies in the oil and gas industry - overview of the recent progress. Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers, 1-4 November, Abu Dhabi, UAE, SPE-138241.

2.       Riboud, J. and Schuster, N. A. (1971). Well logging techniques, 13-18 June, 8th World Petroleum Congress, WPC-14237.

3.       Ellis, D.V. (2007). Well logging for earth scientists. 2nd edition, Dordrecht, The Netherlands: Springer. 17: 692.

4.       Fletcher, A. and Davis, J. (2010). How EOR can be transformed by nanotechnology, in SPE Improved Oil Recovery Symposium 2010, Society of Petroleum Engineers. Tulsa, Oklahoma, USA, 1:152 – 167

5.       Sneider, R. M. B. and Kulha, J. T. (1993). Low-resistivity, low-contrast productive sands. AAPG Database, 33: 1 – 4.

6.       Kulha, J. T. (2004). Low Resistivity, Low-Contrast Pays. Houston Geological Society Bulletin, 41(9): 11.

7.       Hamada, G. M., Al-Blehed, M. S., and Al-Awad, M. N. J. (1999). Determining petrophysical properties of low resistivity reservoirs using nuclear magnetic resonance logs. SPE Annual Technical Conference and Exhibition, 3-6 October, Houston, Texas, SPE 56789.

8.       Stolper, K. (1994). Identify potential low-resistivity pay using visual rock analysis, Houston Geological Society Bulletin, 37(4): 32.

9.       Heavysege, R. G. (2002). Formation evaluation of fresh water shaly sands of the Malay basin, offshore Malaysia. SPWLA 43rd Annual Logging Symposium, Oiso, Japan, 1–14.

10.    Amin, N. C. A. R. (2012). Evaluation of low resistivity low contrast reservoir. Dissertation Universiti Teknologi PETRONAS.

11.    Boyd, A., Darling, H. and Tabanou, J. (1995). The lowdown on low-resistivity pay. Oilfield Review, 7(3): 4 – 18.

12.    Asquith, G. B. and Gibson, C. R. (1982). Basic well log analysis for geologists. Methods in exploration series. Tulsa, Okla., USA: American Association of Petroleum Geologists. 7: 216.

13.    Darling, T. (2005). Well logging and formation evaluation. Gulf drilling guides. Amsterdam; Boston Burlington, MA: Elsevier. Gulf Professional Publication, 9: 326.

14.    Crain, E. R. R. (2001). Crain's petrophysical handbook - 3rd Millennium Edition. Online Shareware Petrophysics Training and Reference Manual.

15.    Worthington, P. F. (2011). The petrophysics of problematic reservoirs. Journal of Petroleum Technology. 63(12): 88 – 97.

16.    Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Society of Petroleum Engineers: Transactions of the AIME, 143(1): 54 – 62.

17.    Yu, H., Kotsmar, C., Yoon, K. Y., Ingram, D. R., Johnston, K. P., Bryant, S. L. and Huh, C. (2010). Transport and retention of aqueous dispersions of paramagnetic nanoparticles in reservoir rocks. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa, Oklahoma, USA, 2: 1027-1047.

18.    Matteo, C., Candido, P., Vera, R. and Francesca, V. (2012). Current and future nanotech applications in the oil industry. American Journal of Applied Sciences, 9(6): 784 – 793.

 




Previous                    Content                    Next