Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 972 - 978
DOI:
https://doi.org/10.17576/mjas-2017-2104-24
PERCENTAGE
DIFFERENCE OF RESISTIVITY OF NANOPARTICLES IN DETERMINING CRUDE OIL USING SAND-PACK EXPERIMENTAL METHOD
(Peratusan
Perbezaan Kerintangan Nanopartikel Dalam Penentuan Minyak Mentah Mengunakan Kaedah
Ujikaji Pek Pasir)
Mohd Zulkifli
Mohamad Noor1*, Mariyamni Awang2, Sonny Irawan2
1Faculty of Chemical
Engineering & Natural Resources,
Universiti Malaysia
Pahang, 26300 Gambang, Pahang, Malaysia
2Department of Petroleum Engineering,
Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak,
Malaysia
*Corresponding author: mzulkifli@ump.edu.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
Nanoparticle with its nanoscale can be
used as a data collector in every part of the development of the petroleum
field. By having a hydrophilic condition for the nanoparticles, it can move to
the targeted area in the water zone. The hydrophilic condition will
differentiate between oil zone and water zone. The objective of the study is to
use the hydrophilic nanoparticles to detect the oil and water zones using sand-pack
displacement test. An experiment using the sand-pack method was done to show
that the hydrophilic nanoparticles can be used to collect data. The
nanoparticles used were aluminum oxide (Al2O3) and nickel
zinc ferrite oxide (NiZnFeO). The results showed that for NiZnFeO, at 3-inch
distance from the injection point, the percentage difference increased from 15%
to 25%, while for Al2O3, the nanoparticles also showed
the same increment but different in values, which were from 6% to 15%. This is
shown by the significant change of resistivity percentage at the 3-inch
distance. To conclude, the use of both types of nanoparticles that have hydrophilic
nanoparticles can show the significant changes for resistivity at internal
short front face of well reservoir with oil zone only.
Keywords: nanoparticles, formation characterization,
sand-pack displacement, resistivity
Abstrak
Nanopartikel dengan
skala nano boleh digunakan sebagai pengumpul data di setiap bahagian
pembangunan bidang petroleum. Dengan adanya keadaan hidrofilik untuk
nanopartikel, ia boleh bergerak ke kawasan yang disasarkan di zon air. Keadaan
hidrofilik akan membezakan antara zon minyak dan zon air. Objektif kajian ini
adalah untuk menggunakan nanopartikel hidrofilik untuk mengesan zon minyak dan
air menggunakan ujian pek pasir. Satu eksperimen menggunakan kaedah pek pasir dilakukan
untuk menunjukkan bahawa nanopartikel hidrofilik boleh digunakan dalam mengumpul
data. Nanopartikel yang digunakan adalah aluminium oksida (Al2O3) dan nikel zink ferit oksida (NiZnFeO). Hasil kajian menunjukkan bahawa untuk NiZnFeO, pada
jarak 3 inci dari sudut suntikan, perbezaan peratusan meningkat daripada 15%
kepada 25%, manakala bagi Al2O3, nanopartikel juga
menunjukkan kenaikan yang sama tetapi berbeza dalam nilai iaitu dari 6% kepada
15%. Ini ditunjukkan oleh perubahan yang ketara peratusan kerintangan pada
jarak 3 inci. Kesimpulannya, penggunaan kedua-dua jenis nanopartikel yang
mempunyai nanopartikel hidrofilik boleh menunjukkan perubahan signifikan bagi
kerintangan muka depan pendek dalaman takungan baik dengan zon minyak sahaja.
Kata kunci: nanopartikel, penentuan formasi,
pengaliran pek pasir, kerintangan
References
1.
Kong,
X. and Ohadi, M. (2010). Applications of micro and nano technologies in the oil
and gas industry - overview of the recent progress. Abu Dhabi International Petroleum Exhibition and
Conference, Society of
Petroleum Engineers, 1-4 November,
Abu Dhabi, UAE, SPE-138241.
2.
Riboud,
J. and Schuster, N. A. (1971). Well logging techniques, 13-18 June, 8th World Petroleum Congress, WPC-14237.
3.
Ellis,
D.V. (2007). Well logging for earth scientists. 2nd edition,
Dordrecht, The Netherlands: Springer.
17: 692.
4.
Fletcher,
A. and Davis, J. (2010). How EOR can be transformed by nanotechnology, in SPE Improved Oil Recovery Symposium 2010,
Society of Petroleum Engineers. Tulsa, Oklahoma, USA, 1:152 – 167
5.
Sneider,
R. M. B. and Kulha, J. T. (1993). Low-resistivity, low-contrast productive
sands. AAPG Database, 33: 1 – 4.
6.
Kulha,
J. T. (2004). Low Resistivity, Low-Contrast Pays. Houston Geological Society Bulletin, 41(9): 11.
7.
Hamada,
G. M., Al-Blehed, M. S., and Al-Awad, M. N. J. (1999). Determining petrophysical
properties of low resistivity reservoirs using nuclear magnetic resonance logs.
SPE Annual Technical Conference and
Exhibition, 3-6 October, Houston, Texas, SPE 56789.
8.
Stolper,
K. (1994). Identify potential low-resistivity pay using visual rock analysis, Houston Geological Society Bulletin,
37(4): 32.
9.
Heavysege,
R. G. (2002). Formation evaluation of fresh water shaly sands of the Malay
basin, offshore Malaysia. SPWLA 43rd
Annual Logging Symposium, Oiso, Japan, 1–14.
10.
Amin,
N. C. A. R. (2012). Evaluation of low resistivity low contrast reservoir.
Dissertation Universiti Teknologi PETRONAS.
11.
Boyd,
A., Darling, H. and Tabanou, J. (1995). The lowdown on low-resistivity pay. Oilfield Review, 7(3): 4 – 18.
12.
Asquith,
G. B. and Gibson, C. R. (1982). Basic well log analysis for geologists. Methods
in exploration series. Tulsa, Okla., USA: American
Association of Petroleum Geologists. 7: 216.
13.
Darling,
T. (2005). Well logging and formation evaluation. Gulf drilling guides. Amsterdam; Boston Burlington, MA:
Elsevier. Gulf Professional Publication, 9: 326.
14.
Crain,
E. R. R. (2001). Crain's petrophysical handbook - 3rd Millennium
Edition. Online Shareware Petrophysics Training and Reference Manual.
15.
Worthington,
P. F. (2011). The petrophysics of problematic reservoirs. Journal of Petroleum Technology. 63(12): 88 – 97.
16.
Archie,
G. E. (1942). The electrical resistivity log as an aid in determining some
reservoir characteristics. Society of
Petroleum Engineers: Transactions of
the AIME, 143(1):
54 – 62.
17.
Yu,
H., Kotsmar, C., Yoon, K. Y., Ingram, D. R., Johnston, K. P., Bryant, S. L. and
Huh, C. (2010). Transport and retention of aqueous dispersions of paramagnetic
nanoparticles in reservoir rocks. In SPE
Improved Oil Recovery Symposium. Society of Petroleum Engineers, Tulsa,
Oklahoma, USA, 2: 1027-1047.
18.
Matteo,
C., Candido, P., Vera, R. and Francesca, V. (2012). Current and future nanotech
applications in the oil industry. American
Journal of Applied Sciences, 9(6): 784 – 793.