Malaysian Journal of Analytical Sciences Vol 21
No 4 (2017): 979 - 985
DOI:
https://doi.org/10.17576/mjas-2017-2104-25
DETERMINATION OF
PHYSICAL CROSSLLINK BETWEEN CARRAGEENAN AND GLYOXYLIC ACID USING DENSITY
FUNCTIONAL THEORY CALCULATIONS
(Penentuan Ikatan Sambung Silang Fizikal
Antara Karagenan dan Asid Glioksilik Menggunakan
Pengiraan Teori Fungsi Ketumpatan)
Siti Hana Abu
Bakar and Fatmawati Adam*
Faculty of Chemical
Engineering & Natural Resources,
Universiti Malaysia
Pahang, 26300 Gambang, Pahang, Malaysia
*Corresponding author: fatmawati@ump.edu.my
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
Film of carrageenan and glyoxylic acid has been
produced with an aim for hard capsule application through manipulation of
physical crosslink. In this paper, the computational calculation has been used
through utilization of density functional theory to predict the possible
location of the physical crosslink in the conjugate complex between carrageenan
and glyoxylic acid (film of carrageenan and glyoxylic acid). The calculations
for pure kappa carrageenan (k-carrageenan), glyoxylic acid and conjugate
complex were carried out using Gaussian 09W; and analysis of molecular
electrostatic potential (MESP) was carried out using Gaussview 5. The molecular
electrostatic surface potential (MESP) for optimized structure for k-carrageenan
and glyoxylic acid have been generated with the red region represents the most
negative electrostatic potential which can be found around oxygen and sulphur
atoms for the carrageenan molecule. While the blue region that represents the
most positive electrostatic potential which can be found around the hydrogen
atom far from the double bond oxygen atoms in glyoxylic acid. Therefore, both
of this regions may interact and form physical crosslink via hydrogen bond
interaction.
Keywords: computational analysis, hard capsule, Gaussian
09W, molecular electrostatic potential, hydrogen bond
Abstrak
Filem karagenan dan
asid glioksilik telah dihasilkan untuk aplikasi kapsul keras melalui manipulasi
kaedah ikatan sambung silang fizikal. Di dalam kertas penyelidikan ini, pengiraan
komputer menggunakan teori fungsi ketumpatan telah digunakan untuk
mengenalpasti lokasi ikatan sambung silang fizikal yang terbentuk di dalam
kompleks kappa-karagenan dan asid glioksilik. Penggiraan teori telah dilakukan untuk
struktur kappa-karagenan, asid glioksilik dan kompleks kappa-karagenan-asid
glioksilik menggunakan perisian Gassian 09W; dan analisis keupayaan
elektrostatik molekul (MESP) dilakukan menggunakan perisian Gaussview 5. Ikatan
sambung silang dapat ditentukan berdasarkan gambar-gambar MESP yang dihasilkan.
Ikatan sambung silang tersebut dapat dilihat melalui interaksi antara keupayaan
elektrostatik negatif (atom oksigen, dan sulfur di dalam karagenan) dan
keupayaan elektrostatik positif (atom hydrogen di dalam asid glioksilik). Maka,
kedua – dua bahagian ini mempunyai interaksi dan membentuk sambung silang
fizikal melalui interaksi ikatan hidrogen
Kata kunci: analisis pengiraan, kapsul keras, Gaussian
09W, keupayaan elektrostatik molekul, ikatan hidrogen
References
1. Girond, S., Crance, J. M., Van Cuyck-Gandre, H., Renaudet, J. and
Deloince, R. (1991). Antiviral activity of carrageenan on hepatitis A virus
replication in cell culture. Research in
Virology, 142: 261 – 270.
2. Hezaveh, H. and
Muhamad, I. I. (2013). Modification and swelling kinetic study of kappa-carrageenan-based
hydrogel for controlled release study. Journal
of the Taiwan Institute of Chemical Engineers, 44(2): 182 – 191.
3. Hezaveh, H. and
Muhamad, I. I. (2013b). Controlled drug release via minimization of burst
release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chemical Engineering Research and Design,
91(3): 508 – 519.
4. Meena, R., Prasad, K.
and Siddhanta, K. (2009). Development of a stable hydrogel network based on agar-kappa-carrageenan blend cross-linked
with genipin. Food Hydrocolloids, 23:
497 – 509.
5. Briones, A. V. and
Sato, T. (2010). Encapsulation of glucose oxidase (GOD) in polyelec-trolyte
complexes of chitosan–carrageenan. Reactive
and Functional Polymer, 70: 19 – 27.
6. Ozsoy, Y. and Bergisadi,
N. (2000). Preparation of mefenamic acid sustained release beads based on
kappa-carrageenan. Bollettino Chimico
Farmaceutico, 139: 120 – 123.
7. USP 30 (2007). United
States Pharmacopeia, chapter 701: 276 – 277.
8. Hiemstra, C., Zhong,
Z., Dijikstra, P. and Feijen, J. (2009). Stereocomplexed PEG-PLA hydrogels in hydrogels:
Biological properties and applications. Roland Barbucci (Editor). Springer-Verlag
Italia, Milan, Italy.
9. Adam, F., A. Bakar, S.
H., M. Yusoff, M. and Tajuddin, S. N. (2013). Molecular dynamic simulation of the
patchouli oil extraction process. Journal
of Chemical and Engineering Data, 59: 183 – 188.
10. Karavas, E., Koutris,
E., Papadopoulos, A. G., Sigalas, M. P., Nanaki, S., Papageorgiou, G. Z.,
Achillas, D. Z. and Bikiatris, D. N. (2014). Application of density functional
theory in combination with FTIR and DSC to characterise polymer drug
interactions for the preparation of sustained release formulations between
fluvastatin and carrageenans. International
Journal of Pharmaceutics, 466: 211 – 222.
11. Becke, A. D. (1993).
Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98: 5648 – 5652.
12. Lee, C., Yang, W. and
Parr, R.G. (1988). Development of the Colle–Salvetti correlation-energy formula
into a functional of the electron density. Physical
Review B, 37: 785 – 789.
13. Kumar, A., Narayan,
V., Prasad, O. and Sinha, L. (2012). Monomeric and dimeric structures,
electronic properties and vibrational spectra of azelaic acid by HF and B3LYP
methods. Journal of Molecular Structure,
1022: 81 – 88.
14. Rawat, P. and Singh,
R. N. (2015). Synthesis, conformational, spectroscopic and chemical reactivity
analysis of 2-cyano-3-(1H-pyrrol-2-yl)acrylohydrazide using experimental and
quantum chemical approaches. Journal of
Molecular Structure, 1082: 118 – 130.
15. Tanak, H. (2015).
Molecular structure, spectroscopic and DFT computational studies on
4,5-bis(tert-butylsulfanyl)phthalonitrile. Journal
of Molecular Structure, 1090: 86 – 92.
16. Suchocki, J. (2000). Conceptual
chemistry: Understanding our world of atoms & molecules. 3rd
edition. Pearson Benjamin, USA.
17. Reger, D. L, Goode, S.
R. and Ball, D. W. (2010) Chemistry: principles and practice. Brooks/Cole: Cengage Learning, Canada.
18. Reichardt, C. and
Welton, T. (2011). Solvents and solvents effects in organic chemistry. John
Wiley & Sons Publication, USA.
19. Sakaguchi, M., Makino,
M., Ohura, T. and Iwata, T. (2014). The correlation between the ionic degree of
covalent bond comprising polymer main chain and the ionic yield due to
mechanical fracture. Polymer, 55(8),
1917 – 1919.
20. Gao, F., He, J., Wu,
E., Liu, S., Yu, D., Li, D., Zhang, S. and Tian, Y. (2003). Hardness of
covalent crystals. Physical Review
Letters, 91: 015502.