Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 979 - 985

DOI: https://doi.org/10.17576/mjas-2017-2104-25

 

 

 

DETERMINATION OF PHYSICAL CROSSLLINK BETWEEN CARRAGEENAN AND GLYOXYLIC ACID USING DENSITY FUNCTIONAL THEORY CALCULATIONS

 

(Penentuan Ikatan Sambung Silang Fizikal Antara Karagenan dan Asid Glioksilik Menggunakan Pengiraan Teori Fungsi Ketumpatan)

 

Siti Hana Abu Bakar and Fatmawati Adam*

 

Faculty of Chemical Engineering & Natural Resources,

Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

 

*Corresponding author:  fatmawati@ump.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

Film of carrageenan and glyoxylic acid has been produced with an aim for hard capsule application through manipulation of physical crosslink. In this paper, the computational calculation has been used through utilization of density functional theory to predict the possible location of the physical crosslink in the conjugate complex between carrageenan and glyoxylic acid (film of carrageenan and glyoxylic acid). The calculations for pure kappa carrageenan (k-carrageenan), glyoxylic acid and conjugate complex were carried out using Gaussian 09W; and analysis of molecular electrostatic potential (MESP) was carried out using Gaussview 5. The molecular electrostatic surface potential (MESP) for optimized structure for k-carrageenan and glyoxylic acid have been generated with the red region represents the most negative electrostatic potential which can be found around oxygen and sulphur atoms for the carrageenan molecule. While the blue region that represents the most positive electrostatic potential which can be found around the hydrogen atom far from the double bond oxygen atoms in glyoxylic acid. Therefore, both of this regions may interact and form physical crosslink via hydrogen bond interaction. 

 

Keywords:  computational analysis, hard capsule, Gaussian 09W, molecular electrostatic potential, hydrogen bond

 

Abstrak

Filem karagenan dan asid glioksilik telah dihasilkan untuk aplikasi kapsul keras melalui manipulasi kaedah ikatan sambung silang fizikal. Di dalam kertas penyelidikan ini, pengiraan komputer menggunakan teori fungsi ketumpatan telah digunakan untuk mengenalpasti lokasi ikatan sambung silang fizikal yang terbentuk di dalam kompleks kappa-karagenan dan asid glioksilik. Penggiraan teori telah dilakukan untuk struktur kappa-karagenan, asid glioksilik dan kompleks kappa-karagenan-asid glioksilik menggunakan perisian Gassian 09W; dan analisis keupayaan elektrostatik molekul (MESP) dilakukan menggunakan perisian Gaussview 5. Ikatan sambung silang dapat ditentukan berdasarkan gambar-gambar MESP yang dihasilkan. Ikatan sambung silang tersebut dapat dilihat melalui interaksi antara keupayaan elektrostatik negatif (atom oksigen, dan sulfur di dalam karagenan) dan keupayaan elektrostatik positif (atom hydrogen di dalam asid glioksilik). Maka, kedua – dua bahagian ini mempunyai interaksi dan membentuk sambung silang fizikal melalui interaksi ikatan hidrogen

 

Kata kunci:  analisis pengiraan, kapsul keras, Gaussian 09W, keupayaan elektrostatik molekul, ikatan hidrogen

 

References

1.       Girond, S., Crance, J. M., Van Cuyck-Gandre, H., Renaudet, J. and Deloince, R. (1991). Antiviral activity of carrageenan on hepatitis A virus replication in cell culture. Research in Virology, 142: 261 – 270.

2.       Hezaveh, H. and Muhamad, I. I. (2013). Modification and swelling kinetic study of kappa-carrageenan-based hydrogel for controlled release study. Journal of the Taiwan Institute of Chemical Engineers, 44(2): 182 – 191.

3.       Hezaveh, H. and Muhamad, I. I. (2013b). Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chemical Engineering Research and Design, 91(3): 508 – 519.

4.       Meena, R., Prasad, K. and Siddhanta, K. (2009). Development of a stable hydrogel network based on       agar-kappa-carrageenan blend cross-linked with genipin. Food Hydrocolloids, 23: 497 – 509.

5.       Briones, A. V. and Sato, T. (2010). Encapsulation of glucose oxidase (GOD) in polyelec-trolyte complexes of chitosan–carrageenan. Reactive and Functional Polymer, 70: 19 – 27.

6.       Ozsoy, Y. and Bergisadi, N. (2000). Preparation of mefenamic acid sustained release beads based on kappa-carrageenan. Bollettino Chimico Farmaceutico, 139: 120 – 123.

7.       USP 30 (2007). United States Pharmacopeia, chapter 701: 276 – 277.

8.       Hiemstra, C., Zhong, Z., Dijikstra, P. and Feijen, J. (2009). Stereocomplexed PEG-PLA hydrogels in hydrogels: Biological properties and applications. Roland Barbucci (Editor). Springer-Verlag Italia, Milan, Italy.

9.       Adam, F., A. Bakar, S. H., M. Yusoff, M. and Tajuddin, S. N. (2013). Molecular dynamic simulation of the patchouli oil extraction process. Journal of Chemical and Engineering Data, 59: 183 – 188.

10.    Karavas, E., Koutris, E., Papadopoulos, A. G., Sigalas, M. P., Nanaki, S., Papageorgiou, G. Z., Achillas, D. Z. and Bikiatris, D. N. (2014). Application of density functional theory in combination with FTIR and DSC to characterise polymer drug interactions for the preparation of sustained release formulations between fluvastatin and carrageenans. International Journal of Pharmaceutics, 466: 211 – 222.

11.    Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98: 5648 – 5652.

12.    Lee, C., Yang, W. and Parr, R.G. (1988). Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37: 785 – 789.

13.    Kumar, A., Narayan, V., Prasad, O. and Sinha, L. (2012). Monomeric and dimeric structures, electronic properties and vibrational spectra of azelaic acid by HF and B3LYP methods. Journal of Molecular Structure, 1022: 81 – 88.

14.    Rawat, P. and Singh, R. N. (2015). Synthesis, conformational, spectroscopic and chemical reactivity analysis of 2-cyano-3-(1H-pyrrol-2-yl)acrylohydrazide using experimental and quantum chemical approaches. Journal of Molecular Structure, 1082: 118 – 130.

15.    Tanak, H. (2015). Molecular structure, spectroscopic and DFT computational studies on 4,5-bis(tert-butylsulfanyl)phthalonitrile. Journal of Molecular Structure, 1090: 86 – 92.

16.    Suchocki, J. (2000). Conceptual chemistry: Understanding our world of atoms & molecules. 3rd edition. Pearson Benjamin, USA.

17.    Reger, D. L, Goode, S. R. and Ball, D. W. (2010) Chemistry: principles and practice. Brooks/Cole:  Cengage Learning, Canada.

18.    Reichardt, C. and Welton, T. (2011). Solvents and solvents effects in organic chemistry. John Wiley & Sons Publication, USA.

19.    Sakaguchi, M., Makino, M., Ohura, T. and Iwata, T. (2014). The correlation between the ionic degree of covalent bond comprising polymer main chain and the ionic yield due to mechanical fracture. Polymer, 55(8), 1917 – 1919.

20.    Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S. and Tian, Y. (2003). Hardness of covalent crystals. Physical Review Letters, 91: 015502.

 




Previous                    Content                    Next