Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 958 - 971

DOI: https://doi.org/10.17576/mjas-2017-2104-23

 

 

 

COMPARISON OF PURIFICATION METHODS TO PURIFY RECOMBINANT BROMELAIN FROM Escherichia coli BL21-A1

 

(Perbandingan Kaedah Penulenan Rekombinan Bromelain daripada Escherichia coli BL21-A1)

 

Zatul Iffah Mohd Arshad1,2*, Azura Amid2, Faridah Yusof 2,Siti Zubaidah Sulaiman 1,

Siti Kholijah Abdul Mudalip1, Rohaida Che Man1, Shalyda Md Shaarani1

 

1Faculty of Chemical Engineering & Natural Resources,

Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia

2Bioprocess and Molecular Engineering Research Unit, Department of Biotechnology Engineering, Faculty of Engineering,

International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia

 

*Corresponding author:  zatul@ump.edu.my

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

Recombinant bromelain is a cysteine protease that can be exploited for its protease activity in food and pharmaceutical applications. The aim of this study was to compare different purification methods aqueous two-phase system (ATPS), ammonium sulphate precipitation, ion exchange, affinity, and gel filtration chromatography) for the recombinant bromelain purification from Escherichia coli BL21-A1. From the SDS-PAGE analysis, all methods produced band with molecular weight between 50 to 55 kDa. Among the methods used, the ATPS purification consisting of 13% (w/w) of PEG6000 and 11% (w/w) potassium phosphate at pH 7.0 was chosen as the best purification method. The method produced 16.39 ± 0.03 % of yield, purification fold of 5.35 ± 0.11, and specific activity of 3.47 ± 0.11 unit/mg of recombinant bromelain. This proposed study can be used as a platform for large-scale downstream processing of recombinant bromelain in industry.

 

Keywords:  recombinant bromelain, purification, chromatography, aqueous two-phase system

 

Abstrak

Rekombinan bromelain adalah sisteina protease yang boleh dieksploitasi dalam aplikasi makanan dan farmaseutikal. Tujuan kajian ini adalah untuk membandingkan kaedah penulenan yang berbeza dengan menggunakan sistem akueus dua fasa (ATPS), pemendakan amonium sulfat, pertukaran ion, afiniti dan gel penapisan kromatografi untuk penulenan rekombinan bromelain daripada Escherichia coli BL21-A1. Daripada analisis SDS-PAGE, semua kaedah menghasilkan jalur dengan berat molekul antara 50 hingga 55 kDa. Antara kaedah yang digunakan, sistem akueus dua fasa (ATPS) yang terdiri daripada 13% (w/w) PEG6000 dan 11% (w/w) kalium fosfat pada pH 7.0 telah dipilih sebagai kaedah penulenan yang terbaik. Kaedah ini mendapat 16.39 ± 0.03% hasil, kadar penulenan 5.35 ± 0.11, dan aktiviti rekombinan bromelain sebanyak 3.47 ± 0.11 unit/mg. Kajian ini dicadangkan boleh digunakan sebagai platform untuk pemprosesan hiliran rekombinan bromelain secara besar-besaran dalam industri.

 

Kata kunci:  rekombinan bromelain, penulenan, kromatografi, sistem akueus dua fasa

 

References

1.       Ketnawa, S., Chaiwut, P. and Rawdkuen, S. (2011). Extraction of bromelain from pineapple peels. Food Science and Technology International, 17(4): 395 – 402.

2.       Arshad, Z. I. M., Amid, A., Yusof, F., Jaswir, I., Ahmad, K. and Loke, S.P. (2014). Bromelain: An overview of industrial application and purification strategies. Applied Microbiology and Biotechnology, 7283 – 7297.

3.       Amid, A., Ismail, N. A., Yusof, F., Salleh, H. M. (2011). Expression, purification, and characterization of a recombinant stem bromelain from Ananas comosus. Process Biochemistry, 46(12): 2232 – 2239.

4.       George, S., Bhasker, S., Madhav, H., Nair, A. and Chinnamma, M. (2014). Functional characterization of recombinant bromelain of Ananas comosus expressed in a prokaryotic system. Molecular Biotechnology, 56(2): 166 – 174.

5.       Jung, Y-J., Choi, C-S., Park, J-H., Kang, H-W., Choi, J-E., Nou, I-S., Lee, S-Y. and Kang, K. K. (2008). Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electronic Journal of Biotechnology, 11(1): 1 –8.

6.       Jamaluddin, M. J. A., Amid, A., Azmi, A. S. and Othman, M. E. F. (2014). Screening of important autoinduction medium composition for high biaomass production of E. coli expressing recombinant bromelain. Journal of Pure and Applied Microbiology, 8(1): 741 – 750.

7.       Arshad, Z. I. M, Amid, A., Othman, M. E. F. (2015). Comparison of different cell disruption methods and cell extractant buffers for recombinant bromelain expressed in E.Coli Bl21-A1. Jurnal Teknologi, 77(24): 83 – 87.

8.       Bala, M. (2011). Recovery of recombinant bromelain from Escherichia coli BL21-AI. African Journal of Biotechnology, 10(81):18829 – 18832.

9.       Mohammadi, H. S., Mostafavi, S. S., Soleimanib, S., Bozorgian, S., Pooraskari, M. and Kianmehr, A. (2015). Response surface methodology to optimize partition and purification of two recombinant oxidoreductase enzymes, glucose dehydrogenase and D-galactose dehydrogenase in aqueous two-phase systems. Protein Expression and  Purification, 108: 41 – 47.

10.    Jacinto, M. J., Soares, R. R. G., Azevedo, A. M., Chu, V., Tover, A., Conde, J. P. and Aires-Barros, M. R (2015). Optimization and miniaturization of aqueous two phase systems for the purification of recombinant human immunodeficiency virus-like particles from a CHO cell supernatant. Separation and Purification Technology, 154: 27 – 35.

11.    Studier, F. W. (2005). Protein production by auto-induction in high-density shaking cultures. Protein Expression and  Purification, 41(1): 207 – 234.

12.    Heinrickson, R. L. and Kézdy, F. J. (1976). Acidic cysteine protease inhibitors from pineapple stem. In: Laszlo L, editor. Methods in Enzymology, 740 – 751.

13.    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248 – 254.

14.    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680 – 685.

15.    Grodzki, A. C. and Berenstein, E. (2010). Antibody purification: Ammonium sulfate fractionation or gel filtration. Immunocytochemical Methods and Protocols Totowa, NJ: Humana Press. pp. 15 – 26.

16.    Devakate, R. V., Patil, V. V., Waje, S. S. and Thorat, B. N. (2009). Purification and drying of bromelain. Separation and Purification Technology, 64(3): 259 – 264.

17.    Soares, P. A. G., Vaz, A. F. M., Correia, M. T. S., Pessoa, A. and Carneiro-Da-Cunha, M. G. (2012). Purification of bromelain from pineapple wastes by ethanol precipitation. Separation and Purification Technology, 98: 389 – 395.

18.    Walsh, G. (2002). Proteins biochemistry and biotechnology. John Wiley & Sons Ltd.

19.    Costa, H. B., Fernandes, P. M. B., Romão, W. and Ventura, J. A. (2014). A new procedure based on column chromatography to purify bromelain by ion exchange plus gel filtration chromatographies. Industrial Crops and Products, 59: 163 – 168.

20.    Suh, H. J, Lee, H., Cho, H.Y. and Yang, H. B. (1992). Purification and characterization of bromelain isolated from pineapple. Hanguk Nonghwa Hakhoe, 35: 300 – 307.

21.    Nam, S. H., Walsh, M. K. and Yang, K.Y. (2016). Comparison of four purification methods to purify cysteine protease from Asian pear fruit (Pyrus pyrifolia). Biocatalysis and Agricultural Biotechnology, 5: 86 – 93.

22.    Raja, S. and Murty, V. R. (2013). Liquid-liquid equilibria of aqueous two-phase systems containing PEG + sodium citrate+ water at various pH. Journal of Chemical Science and Technology, 2(4):169 – 174.

23.    Aguilar, O., Albiter, V., Serrano-Carreón, L. and Rito-Palomares, M. (2006). Direct comparison between ion-exchange chromatography and aqueous two-phase processes for the partial purification of penicillin acylase produced by E. coli. Journal of Chromatography B, 835(1–2): 77 – 83.

24.    Bekale, L., Agudelo, D. and Tajmir-Riahi, H. A. (2015). The role of polymer size and hydrophobic end-group in PEG–protein interaction. Colloids and Surfaces B Biointerfaces, 130:141 – 148.

25.    Ng, H. S, Tan, C. P, Chen, S. K., Mokhtar, M. N., Ariff, A. and Ling, T. C. (2011). Primary capture of cyclodextrin glycosyltransferase derived from Bacillus cereus by aqueous two phase system. Separation and Purification Technology, 81(3): 318 – 324.

26.    Ramakrishnan, V., Goveas, L. C., Suralikerimath, N., Jampani, C., Halami, P. M. and Narayan, B. (2016). Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase  system  (ATPS) and  its biochemical characterization. Biocatalysis and Agricultural Biotechnology, 6: 19 – 27.

 




Previous                    Content                    Next