Malaysian Journal of Analytical Sciences Vol 21
No 4 (2017): 950 - 957
DOI:
https://doi.org/10.17576/mjas-2017-2104-22
DODECYLBENZENE SULFONIC ACID CONCENTRATION
EFFECT ON ELECTRICAL AND THERMAL PROPERTIES OF POLYANILINE
(Kesan
Penumpuan Asid Sulfonik Dodekilbenzena ke atas Sifat Elektrik dan Termal
Polianilin)
Nurul Akmil Mustaffa1*, Qumrul Ahsan1, Mohd Asyadi
Azam1, Luqman Chuah Abdullah2
1Faculty of Manufacturing
Engineering,
Universiti Teknikal
Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
2Material Processing and Technology Laboratory, Institute of Advance
Technology,
Universiti Putra Malaysia, 42400 UPM Serdang, Selangor, Malaysia
*Corresponding author: akmil.mustaffa@gmail.com
Received:
28 November 2016; Accepted: 5 February 2017
Abstract
Polyaniline
(PANI) doped with various concentration of dedocylbenzene sulfonate acid (DBSA)
were prepared by oxidative polymerization with presence of ammonium persulfate.
Emerald green PANI powder obtained were characterized by Fourier transform infrared
spectroscopy (FTIR), differential scanning calorimetry (DSC), and carried out
electrical conductivity test. In this research, the conductivity and thermal
properties of PANI has been changed with the effect of doping. With increasing
concentration of DBSA, the conductivity raises up to certain concentration
(1.65 mmol of DBSA), afterwards with further increase of DBSA concentration,
conductivity value declines and reaches to a value lower than that of pristine
PANI. The similar trend is also observed for enthalpy values (ΔH) determined by
DSC of pristine PANI and DBSA doped PANIs’ which may attribute the effect of
concentration of DBSA on molecular arrangement in PANI. Results from polymeric
structure obtained from FTIR clearly indicate the disruption in bond when PANI
doped with DBSA and it may indicate that the DBSA changes molecule structure of
PANI in term of segmented local structure of polymer.
Keywords: polyaniline, advanced material,
dodecylbenzene sulfonate acid, conductivity, differential scanning calorimetry
Abstrak
Polianilin (PANI)
didopkan dengan pelbagai kepekatan asid sulfonat dodekilbenzena (DBSA) telah
disediakan dengan kaedah pempolimeran oksidatif dengan kehadiran ammonium
persulfat. Serbuk hijau zamrud PANI yang diperolehi dicirikan oleh spektroskopi
inframerah Fourier (FTIR), kalorimeter imbasan pembeza (DSC), dan ukuran
kekonduksian. Dalam kajian ini, didapati bahawa kekonduksian haba dan sifat –
sifat PANI telah ditukar sebagai kesan daripada pendopan. Dengan peningkatan kepekatan
DBSA, kekonduksian juga meningkat sehingga kepekatan tertentu (1.65 mmol
daripada DBSA). Kemudian, kekonduksian berkurangan dengan peningkatan kepekatan
DBSA selanjutnya. Keputusan PANI daripada DSC, yang mengandungi nilai entalpi
yang berbeza (ΔH) menunjukkan bahawa DBSA tidak mengubah struktur molekul PANI
dari segi segmen struktur tempatan polimer dan ΔH juga menunjukkan ke arah
kesan kepekatan DBSA pada susunan molekul dalam PANI.
Kata kunci: polianilin, bahan termaju, asid sulfonat
dodekilbenzena, konduktiviti, kalorimeter imbasan pembeza
References
1.
Basavaraja,
C., Pierson, R., Kim, J. H. and Huh, D. S. (2008). Microscopic studies of
polyaniline-poly-n-isopropylacrylamide/alumina composites containing
dodecylbenzene sulfonic acid. Bulletin of
the Korean Chemical Society, 29(9): 1699 – 1704.
2.
Skotheim,
T. A. (1986). Handbook of Conducting Polymer, Marcel Dekker, New York.
3.
Saini,
P. and Choudhary, V. (2015). Structural, spectral and thermal properties of
bulky organic sulfonic acids doped polyanilines and antistatic performance of
its melt blend. Indian Journal of Pure
& Applied Physics, 53(5): 320 – 327.
4.
Wang,
Y., Ji, H., Shi, H., Zhang, T. and Xia, T. (2015). Fabrication and
characterization of stearic acid/polyaniline composite with electrical conductivity
as phase change materials for thermal energy storage. Energy Conversion and Management, 98: 322 – 330.
5.
Wallace, G. G., Spinks, G. M. and
Teasdale, P. R. (1997). Conductive electroactive polymers; intelligent materials
systems. Lancaster: Technomic.
6.
Socrates,
G. (2004). Infrared and Raman characteristic group frequencies: tables and
charts. John Wiley & Sons.
7.
Molapo,
K. M., Ndangili, P. M., Ajayi, R. F., Mbambisa, G., Mailu, S. M., Njomo, N.,
Masikini, M., Baker, P. and Iwuoha, E. I. (2012). Electronics of conjugated
polymers (I): polyaniline. International
Journal of Electrochemical Science, 7(12): 11859 – 11875.
8.
Khokhlov,
A. R. (1981). Theory of the polymer chain collapse for the d-dimensional case. Physica A: Statistical Mechanics and its
Applications, 105(1-2): 357 – 362.
9.
Abrams,
C. F., Lee, N. K. and Obukhov, S. P. (2002). Collapse dynamics of a polymer chain:
Theory and simulation. EPL (Europhysics
Letters), 59(3): 391.
10.
Hatakeyama,
T. and Quinn, F. X. (1999). Thermal analysis: fundamentals and applications to
polymer science. , 2nd Edition, John Wiley & Sons.
11.
Menczel,
J. D. and Prime, R. B. (2014). Thermal analysis of polymers: fundamentals and
applications. John Wiley & Sons.
12.
Pitchimani,
R., Zheng, W., Simon, S. L., Hope-Weeks, L. J., Burnham, A. K. and Weeks, B. L.
(2007). Thermodynamic analysis of pure and impurity doped pentaerythritol
tetranitrate crystals grown at room temperature. Journal of Thermal Analysis and Calorimetry, 89(2): 475 – 478.
13.
Imre,
Á. W., Schönhoff, M. and Cramer, C. (2008). A conductivity study and
calorimetric analysis of dried poly (sodium 4-styrene sulfonate)/poly
(diallyldimethylammonium chloride) polyelectrolyte complexes. The Journal of Chemical Physics,
128(13): 134905.
14.
Wang,
Y., Ji, H., Shi, H., Zhang, T. and Xia, T. (2015). Fabrication and
characterization of stearic acid/polyaniline composite with electrical
conductivity as phase change materials for thermal energy storage. Energy Conversion and Management, 98:
322 – 330.
15.
Mustaffa, N. A., Ahsan, Q., Azam, M. A. and Abdullah, L. C.
(2016). Effect of dodecylbenzene sulfonic acid dopant concentration on the
synthesis of polyaniline. Jurnal
Teknologi.