Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017):
941 - 949
DOI:
https://doi.org/10.17576/mjas-2017-2104-21
EFFECT OF VARIOUS POWER LEVEL AND
DIFFERENT RATIO OF FRUIT TO WATER IN OIL PALM FRUITS MICROWAVE STERILIZER
(Kesan Pelbagai Tahap Kuasa dan Nisbah Berlainan Buah terhadap Air dalam
Pensterilan Gelombang Mikro Buah Kelapa Sawit)
Norashikin Ahmad Zamanhuri*, Norazah Abd Rahman, Noor Fitrah Abu Bakar
Faculty of Chemical
Engineering,
Universiti Teknologi
MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: shikin282103@gmail.com
Received: 28
November 2016; Accepted: 5 February 2017
Abstract
The aim of this paper is to investigate the effect of using
various power level and different ratio of fruit to water in microwave
sterilizer in order to acquire the shortest time of the fruit to be completely
detached from the spikelet. Normally, the palm oil fruits processing uses steam
heating for sterilization of oil palm fruit brunches. The conventional steam
treatment of sterilization produces large amount of waste water from the palm
oil mill process. Also, this process is classifying as crucial process with the
intention of inactivate the lipolytic enzyme as prevention to the increase of
free fatty acids (FFA) in oil. Therefore, microwave irradiation is used in this
research for solving this problem and improving of palm oil fruit quality prior
to extraction of crude palm oil (CPO). The optimal condition was 800W for 6 minutes
of 100% strip of fruit from the spikelet with 1:0.5 ratio by means of 4.08% of
FFA. It can be concluded that microwave radiation is suitable for quick
detachment of the fruitlet from the spikelet and fruit loosening performed
without kernels started to turn brown and appeared dehydrated. Throughout the trial, the quality of the oil
extracted from the microwave sterilized spikelets in terms of the FFA
percentage was acceptable. The quality of the oil is excellent, with free
fatty acids of the crude oil generally below 5%.
Keywords: oil palm fruits, sterilisation, microwave,
stripping, free fatty acids
Abstrak
Tujuan
kertas ini adalah untuk mengkaji kesan menggunakan pelbagai tahap kuasa dan
nisbah yang berbeza buah-buahan terhadap air dalam pensterilan gelombang mikro
untuk memperoleh masa yang singkat buah-buahan terpisah lengkap daripada
spikelet itu. Biasanya, pemprosesan buah kelapa sawit menggunakan pemanasan
stim untuk tujuan pensterilan. Rawatan wap konvensional pensterilan
menghasilkan sejumlah besar air sisa daripada proses kilang minyak sawit. Juga,
proses ini diklasifikasikan proses sebagai penting dengan niat untuk
menyahaktifkan enzim lipolitik sebagai pencegahan kepada peningkatan asid lemak
bebas (FFA) dalam minyak. Oleh itu, penyinaran gelombang mikro digunakan dalam
kajian ini untuk menyelesaikan masalah dan meningkatkan kualiti buah kelapa
sawit sebelum pengekstrakan minyak sawit mentah (MSM). Keadaan optimum adalah
800W untuk 6 minit daripada 100% lerai buah dari spikelet dengan nisbah 1: 0.5
bagi 4.08% FFA. Dapat disimpulkan bahawa radiasi gelombang mikro adalah sesuai
untuk peleraian cepat buah dari spikelet dan ia dapat dilakukan tanpa biji mula
bertukar coklat dan kelihatan kering. Sepanjang ujikaji, kualiti minyak yang
diekstrak daripada gelombang mikro disterilkan dari segi peratusan FFA boleh
diterima. Kualiti minyak adalah yang baik, dengan asid lemak bebas minyak mentah
biasanya di bawah 5%.
Kata kunci: buah kelapa sawit, pensterilan, gelombang
mikro, pelucutan, asid lemak bebas
References
1.
Osei-Amponsah, C., Visser,
L., Adjei-Nsiah, S., Struik, P. C., Sakyi-Dawson, O. and Stomph, T. J. (2012).
Processing practices of small-scale palm oil producers in the Kwaebibirem
District, Ghana: A diagnostic study. NJAS-Wageningen Journal of Life
Sciences, 60: 49 – 56.
2.
Awalludin, M. F., Sulaiman, O., Hashim, R.
and Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in
Malaysia and its waste utilization through thermochemical conversion,
specifically via liquefaction. Renewable and Sustainable Energy Reviews,
50: 1469 – 1484.
3.
Vincent, C. J., Shamsudin, R. and Baharuddin,
A. S. (2014). Pre-treatment of oil palm fruits: A review. Journal of Food
Engineering, 143: 123 – 131.
4.
Hansen, S. B., Padfield, R., Syayuti, K.,
Evers, S., Zakariah, Z. and Mastura, S. (2015). Trends in global palm oil
sustainability research. Journal of Cleaner Production, 100, 140 – 149.
5.
Basiron, Y. and Weng, C. K. (2004). The
oil palm and its sustainability. Journal of Oil Palm Research, 16(1): 1
– 10.
6.
Lam, M. K. and Lee, K. T. (2011).
Renewable and sustainable bioenergies production from palm oil mill effluent
(POME): win–win strategies toward better environmental protection. Biotechnology
Advances, 29(1): 124 – 141.
7.
Owolarafe, O. K. and Oni, O. A. (2011).
Modern mill technology and centralised processing system, an alternative for
improving performance of palm oil mills in Abia State, Nigeria. Technology
in Society, 33(1): 12 – 22.
8.
Ahmad, A. L., Ismail, S. and Bhatia, S.
(2003). Water recycling from palm oil mill effluent (POME) using membrane
technology. Desalination, 157(1-3): 87 – 95.
9.
Sanagi, M. M., See, H. H., Ibrahim, W. A.
W. and Naim, A. A. (2005). Determination of carotene, tocopherols and
tocotrienols in residue oil from palm pressed fiber using pressurized liquid
extraction-normal phase liquid chromatography. Analytica Chimica Acta,
538(1): 71 – 76.
10.
Sivasothy, K., Hwa, R. M. T. T. Y. and
Basiron, Y. (2006). Continuous sterilization: The new paradigm for modernizing
palm oil milling. Journal of Oil Palm Research, 2006: 144 – 152.
11.
Norulaini, N. N., Ahmad, A., Omar, F. M.,
Banana, A. A. S., Zaidul, I. M. and Kadir, M. O. A. (2008). Sterilization and
extraction of palm oil from screw pressed palm fruit fiber using supercritical
carbon dioxide. Separation and Purification Technology, 60(3): 272 – 277.
12.
Chow, M. C. and Ma, A. N. (2007).
Processing of fresh palm fruits using microwaves. Journal of Microwave Power
and Electromagnetic Energy, 40(3), 165 – 173.
13.
Fatin, S. A., Rosnah, S. and Yunus, R.
(2014). Effect of chopping oil palm fruit spikelets on the free fatty acid
content release rate and its mechanical properties. International Journal of
Research in Engineering and Technology, 3(1): 511 – 516.
14.
Tan, C. H., Ghazali, H. M., Kuntom, A.,
Tan, C. P. and Ariffin, A. A. (2009). Extraction and physicochemical properties
of low free fatty acid crude palm oil. Food Chemistry, 113(2), 645 – 650.
15.
Cheng, S. F. and Chuah, C. H. (2011).
Microwave pretreatment: A clean and dry method for palm oil production. Industrial
Crops and Products, 34(1): 967 – 971.
16.
Sarah, M. and Taib, M. R. (2013).
Microwave sterilization of oil palm fruits: Effect of power, temperature and d-value
on oil quality. Journal of Medical and Bioengineering, 2(3): 129 – 133.
17.
Ali, F. S., Shamsudin, R. and Yunus, R.
(2014). The effect of storage time of chopped oil palm fruit bunches on the
palm oil quality. Agriculture and Agricultural Science Procedia, 2: 165
– 172.
18.
Sukaribin, N. and Khalid, K. (2009).
Effectiveness of sterilisation of oil palm bunch using microwave technology. Industrial
Crops and Products, 30(2): 179 – 183.
19.
Arimi, J. M., Duggan, E., O’Sullivan, M.,
Lyng, J. G. and O’Riordan, E. D. (2010). Effect of moisture content and water
mobility on microwave expansion of imitation cheese. Food Chemistry,
121(2), 509 – 516.
20.
McLoughlin, C. M., McMinn, W. A. M., &
Magee, T. R. A. (2000). Microwave drying of pharmaceutical powders. Food and
Bioproducts Processing, 78(2): 90 – 96.
21. Bayramoglu, B., Sahin, S.
and Sumnu, G. (2008). Solvent-free microwave extraction of essential oil from
oregano. Journal of Food Engineering, 88(4): 535 – 540.
22. Zhao, S. and Zhang, D.
(2014). Supercritical CO2 extraction of Eucalyptus leaves oil and
comparison with Soxhlet extraction and hydro-distillation methods. Separation
and Purification Technology, 133: 443 – 451.
23. Siew, W. L., Tan, Y. A. and
Tang, T. S. (1995). Methods of test for palm oil and palm oil products:
Compiled by Siew Wai Lin, Tang Thin Sue, Tan Yew Ai. Palm Oil Research
Institute of Malaysia.
24.
Sarah, M., Taib, M. R. and Adamu, A. (2014). Enzymatic inactivation
of oil palm fruits: Comparison of microwave irradiation and steam bath process.
Jurnal Teknologi, 65: 55 – 60.
25. Nokkaew, R. and Punsuvon, V.
(2014). Sterilization of oil palm fruits by microwave heating for replacing
steam treatment in palm oil mill process. Advanced Materials Research,
1025: 470 – 475.
26. Lucchesi, M. E., Chemat, F.
and Smadja, J. (2004). Solvent-free microwave extraction of essential oil from
aromatic herbs: comparison with conventional hydro-distillation. Journal of
Chromatography A, 1043(2): 323 – 327.
27. Li, Y., Fabiano-Tixier, A.
S., Vian, M. A. and Chemat, F. (2013). Solvent-free microwave extraction of
bioactive compounds provides a tool for green analytical chemistry. TrAC
Trends in Analytical Chemistry, 47: 1 – 11.
28. Ghanem, N., Mihoubi, D.,
Kechaou, N. and Mihoubi, N. B. (2012). Microwave dehydration of three citrus
peel cultivars: Effect on water and oil retention capacities, color, shrinkage
and total phenols content. Industrial Crops and Products, 40: 167 – 177.
29. Virot, M., Tomao, V.,
Ginies, C., Visinoni, F. and Chemat, F. (2008). Microwave-integrated extraction
of total fats and oils. Journal of Chromatography A, 1196: 57 – 64.
30. Benmoussa, H., Farhat, A.,
Romdhane, M. and Bouajila, J. (2016). Enhanced solvent-free microwave
extraction of Foeniculum vulgare Mill. essential oil seeds using double walled
reactor. Arabian Journal of Chemistry, Article in Press.
31. Chong, C. L. and
Sambanthamurthi, R. (1993). Effects of mesocarp bruising on the rate of free
fatty acid release in oil palm fruits. International Biodeterioration &
Biodegradation, 31(1): 65 – 70.
32. Mba, O. I., Dumont, M. J.
and Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in
the food industry–A review. Food bioscience, 10: 26 – 41.
33. Takagi, S. and Yoshida, H.
(1999). Microwave heating influences on fatty acid distributions of
triacylglycerols and phospholipids in hypocotyl of soybeans (glycine max L.). Food
Chemistry, 66(3), 345 – 351.
34. Filly, A., Fernandez, X.,
Minuti, M., Visinoni, F., Cravotto, G. and Chemat, F. (2014). Solvent-free
microwave extraction of essential oil from aromatic herbs: from laboratory to
pilot and industrial scale. Food Chemistry, 150: 193 – 198.
35. Chandrasekaran, S.,
Ramanathan, S. and Basak, T. (2013). Microwave food processing—A review. Food
Research International, 52(1): 243 – 261.
36. Lucchesi, M. E., Smadja, J.,
Bradshaw, S., Louw, W. and Chemat, F. (2007). Solvent free microwave extraction
of Elletaria cardamomum L.: A multivariate study of a new technique for
the extraction of essential oil. Journal of Food Engineering, 79(3): 1079
– 1086.
37. Umudee, I., Chongcheawchamnan,
M., Kiatweerasakul, M. and Tongurai, C. (2013). Sterilization of oil palm fresh
fruit using microwave technique. International Journal of Chemical
Engineering and Applications, 4(3), 111 – 113.