Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 941 - 949

DOI: https://doi.org/10.17576/mjas-2017-2104-21

 

 

 

EFFECT OF VARIOUS POWER LEVEL AND DIFFERENT RATIO OF FRUIT TO WATER IN OIL PALM FRUITS MICROWAVE STERILIZER

 

(Kesan Pelbagai Tahap Kuasa dan Nisbah Berlainan Buah terhadap Air dalam Pensterilan Gelombang Mikro Buah Kelapa Sawit)

 

Norashikin Ahmad Zamanhuri*, Norazah Abd Rahman, Noor Fitrah Abu Bakar

 

Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author:  shikin282103@gmail.com

 

 

Received: 28 November 2016; Accepted: 5 February 2017

 

 

Abstract

The aim of this paper is to investigate the effect of using various power level and different ratio of fruit to water in microwave sterilizer in order to acquire the shortest time of the fruit to be completely detached from the spikelet. Normally, the palm oil fruits processing uses steam heating for sterilization of oil palm fruit brunches. The conventional steam treatment of sterilization produces large amount of waste water from the palm oil mill process. Also, this process is classifying as crucial process with the intention of inactivate the lipolytic enzyme as prevention to the increase of free fatty acids (FFA) in oil. Therefore, microwave irradiation is used in this research for solving this problem and improving of palm oil fruit quality prior to extraction of crude palm oil (CPO). The optimal condition was 800W for 6 minutes of 100% strip of fruit from the spikelet with 1:0.5 ratio by means of 4.08% of FFA. It can be concluded that microwave radiation is suitable for quick detachment of the fruitlet from the spikelet and fruit loosening performed without kernels started to turn brown and appeared dehydrated. Throughout the trial, the quality of the oil extracted from the microwave sterilized spikelets in terms of the FFA percentage was acceptable. The quality of the oil is excellent, with free fatty acids of the crude oil generally below 5%. 

 

Keywords:  oil palm fruits, sterilisation, microwave, stripping, free fatty acids

 

Abstrak

Tujuan kertas ini adalah untuk mengkaji kesan menggunakan pelbagai tahap kuasa dan nisbah yang berbeza buah-buahan terhadap air dalam pensterilan gelombang mikro untuk memperoleh masa yang singkat buah-buahan terpisah lengkap daripada spikelet itu. Biasanya, pemprosesan buah kelapa sawit menggunakan pemanasan stim untuk tujuan pensterilan. Rawatan wap konvensional pensterilan menghasilkan sejumlah besar air sisa daripada proses kilang minyak sawit. Juga, proses ini diklasifikasikan proses sebagai penting dengan niat untuk menyahaktifkan enzim lipolitik sebagai pencegahan kepada peningkatan asid lemak bebas (FFA) dalam minyak. Oleh itu, penyinaran gelombang mikro digunakan dalam kajian ini untuk menyelesaikan masalah dan meningkatkan kualiti buah kelapa sawit sebelum pengekstrakan minyak sawit mentah (MSM). Keadaan optimum adalah 800W untuk 6 minit daripada 100% lerai buah dari spikelet dengan nisbah 1: 0.5 bagi 4.08% FFA. Dapat disimpulkan bahawa radiasi gelombang mikro adalah sesuai untuk peleraian cepat buah dari spikelet dan ia dapat dilakukan tanpa biji mula bertukar coklat dan kelihatan kering. Sepanjang ujikaji, kualiti minyak yang diekstrak daripada gelombang mikro disterilkan dari segi peratusan FFA boleh diterima. Kualiti minyak adalah yang baik, dengan asid lemak bebas minyak mentah biasanya di bawah 5%.

 

Kata kunci:  buah kelapa sawit, pensterilan, gelombang mikro, pelucutan, asid lemak bebas

 

References

1.       Osei-Amponsah, C., Visser, L., Adjei-Nsiah, S., Struik, P. C., Sakyi-Dawson, O. and Stomph, T. J. (2012). Processing practices of small-scale palm oil producers in the Kwaebibirem District, Ghana: A diagnostic study. NJAS-Wageningen Journal of Life Sciences, 60: 49 – 56.

2.       Awalludin, M. F., Sulaiman, O., Hashim, R. and Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews, 50: 1469 – 1484.

3.       Vincent, C. J., Shamsudin, R. and Baharuddin, A. S. (2014). Pre-treatment of oil palm fruits: A review. Journal of Food Engineering, 143: 123 – 131.

4.       Hansen, S. B., Padfield, R., Syayuti, K., Evers, S., Zakariah, Z. and Mastura, S. (2015). Trends in global palm oil sustainability research. Journal of Cleaner Production, 100, 140 – 149.

5.       Basiron, Y. and Weng, C. K. (2004). The oil palm and its sustainability. Journal of Oil Palm Research, 16(1): 1 – 10.

6.       Lam, M. K. and Lee, K. T. (2011). Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnology Advances, 29(1): 124 – 141.

7.       Owolarafe, O. K. and Oni, O. A. (2011). Modern mill technology and centralised processing system, an alternative for improving performance of palm oil mills in Abia State, Nigeria. Technology in Society, 33(1): 12 – 22.

8.       Ahmad, A. L., Ismail, S. and Bhatia, S. (2003). Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination, 157(1-3): 87 – 95.

9.       Sanagi, M. M., See, H. H., Ibrahim, W. A. W. and Naim, A. A. (2005). Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography. Analytica Chimica Acta, 538(1): 71 – 76.

10.    Sivasothy, K., Hwa, R. M. T. T. Y. and Basiron, Y. (2006). Continuous sterilization: The new paradigm for modernizing palm oil milling. Journal of Oil Palm Research, 2006: 144 – 152.

11.    Norulaini, N. N., Ahmad, A., Omar, F. M., Banana, A. A. S., Zaidul, I. M. and Kadir, M. O. A. (2008). Sterilization and extraction of palm oil from screw pressed palm fruit fiber using supercritical carbon dioxide. Separation and Purification Technology, 60(3): 272 – 277.

12.    Chow, M. C. and Ma, A. N. (2007). Processing of fresh palm fruits using microwaves. Journal of Microwave Power and Electromagnetic Energy, 40(3), 165 – 173.

13.    Fatin, S. A., Rosnah, S. and Yunus, R. (2014). Effect of chopping oil palm fruit spikelets on the free fatty acid content release rate and its mechanical properties. International Journal of Research in Engineering and Technology, 3(1): 511 – 516.

14.    Tan, C. H., Ghazali, H. M., Kuntom, A., Tan, C. P. and Ariffin, A. A. (2009). Extraction and physicochemical properties of low free fatty acid crude palm oil. Food Chemistry, 113(2), 645 – 650.

15.    Cheng, S. F. and Chuah, C. H. (2011). Microwave pretreatment: A clean and dry method for palm oil production. Industrial Crops and Products, 34(1): 967 – 971.

16.    Sarah, M. and Taib, M. R. (2013). Microwave sterilization of oil palm fruits: Effect of power, temperature and d-value on oil quality. Journal of Medical and Bioengineering, 2(3): 129 – 133.

17.    Ali, F. S., Shamsudin, R. and Yunus, R. (2014). The effect of storage time of chopped oil palm fruit bunches on the palm oil quality. Agriculture and Agricultural Science Procedia, 2: 165 – 172.

18.    Sukaribin, N. and Khalid, K. (2009). Effectiveness of sterilisation of oil palm bunch using microwave technology. Industrial Crops and Products, 30(2): 179 – 183.

19.    Arimi, J. M., Duggan, E., O’Sullivan, M., Lyng, J. G. and O’Riordan, E. D. (2010). Effect of moisture content and water mobility on microwave expansion of imitation cheese. Food Chemistry, 121(2), 509 – 516.

20.    McLoughlin, C. M., McMinn, W. A. M., & Magee, T. R. A. (2000). Microwave drying of pharmaceutical powders. Food and Bioproducts Processing, 78(2): 90 – 96.

21.    Bayramoglu, B., Sahin, S. and Sumnu, G. (2008). Solvent-free microwave extraction of essential oil from oregano. Journal of Food Engineering, 88(4): 535 – 540.

22.    Zhao, S. and Zhang, D. (2014). Supercritical CO2 extraction of Eucalyptus leaves oil and comparison with Soxhlet extraction and hydro-distillation methods. Separation and Purification Technology, 133: 443 – 451.

23.    Siew, W. L., Tan, Y. A. and Tang, T. S. (1995). Methods of test for palm oil and palm oil products: Compiled by Siew Wai Lin, Tang Thin Sue, Tan Yew Ai. Palm Oil Research Institute of Malaysia.

24.    Sarah, M., Taib, M. R. and Adamu, A. (2014). Enzymatic inactivation of oil palm fruits: Comparison of microwave irradiation and steam bath process. Jurnal Teknologi, 65: 55 – 60.

25.    Nokkaew, R. and Punsuvon, V. (2014). Sterilization of oil palm fruits by microwave heating for replacing steam treatment in palm oil mill process. Advanced Materials Research, 1025: 470 – 475.

26.    Lucchesi, M. E., Chemat, F. and Smadja, J. (2004). Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography A, 1043(2): 323 – 327.

27.    Li, Y., Fabiano-Tixier, A. S., Vian, M. A. and Chemat, F. (2013). Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends in Analytical Chemistry, 47: 1 – 11.

28.    Ghanem, N., Mihoubi, D., Kechaou, N. and Mihoubi, N. B. (2012). Microwave dehydration of three citrus peel cultivars: Effect on water and oil retention capacities, color, shrinkage and total phenols content. Industrial Crops and Products, 40: 167 – 177.

29.    Virot, M., Tomao, V., Ginies, C., Visinoni, F. and Chemat, F. (2008). Microwave-integrated extraction of total fats and oils. Journal of Chromatography A, 1196: 57 – 64.

30.    Benmoussa, H., Farhat, A., Romdhane, M. and Bouajila, J. (2016). Enhanced solvent-free microwave extraction of Foeniculum vulgare Mill. essential oil seeds using double walled reactor. Arabian Journal of Chemistry, Article in Press.

31.    Chong, C. L. and Sambanthamurthi, R. (1993). Effects of mesocarp bruising on the rate of free fatty acid release in oil palm fruits. International Biodeterioration & Biodegradation, 31(1): 65 – 70.

32.    Mba, O. I., Dumont, M. J. and Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry–A review. Food bioscience, 10: 26 – 41.

33.    Takagi, S. and Yoshida, H. (1999). Microwave heating influences on fatty acid distributions of triacylglycerols and phospholipids in hypocotyl of soybeans (glycine max L.). Food Chemistry, 66(3), 345 – 351.

34.    Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G. and Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chemistry, 150: 193 – 198.

35.    Chandrasekaran, S., Ramanathan, S. and Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1): 243 – 261.

36.    Lucchesi, M. E., Smadja, J., Bradshaw, S., Louw, W. and Chemat, F. (2007). Solvent free microwave extraction of Elletaria cardamomum L.: A multivariate study of a new technique for the extraction of essential oil. Journal of Food Engineering, 79(3): 1079 – 1086.

37.    Umudee, I., Chongcheawchamnan, M., Kiatweerasakul, M. and Tongurai, C. (2013). Sterilization of oil palm fresh fruit using microwave technique. International Journal of Chemical Engineering and Applications, 4(3), 111 – 113.

 




Previous                    Content                    Next