Malaysian Journal of Analytical Sciences Vol
21 No 4 (2017): 928 - 940
DOI:
https://doi.org/10.17576/mjas-2017-2104-20
PERFORMANCE
ENHANCEMENT OF DYE SENSITIZED SOLAR CELL USING GRAPHENE
OXIDE DOPED TITANIUM DIOXIDE PHOTOELECTRODE
(Peningkatan
Prestasi Bagi Sel Suria Pemeka Warna Menggunakan Grafin Oksida di dalam
Titanium Dioksida Sebagai Fotoelektrod)
Ahmad Muslihin
Ramli, Mohd Zikri Razali, Norasikin Ahmad Ludin*
Solar Energy Research Institute,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: sheekeen@ukm.edu.my
Received: 28
November 2016; Accepted: 27 April 2017
Abstract
Dye-sensitized solar cell (DSSCs) is one of the
photovoltaic cells that have attracted extensive research over decade. In this
study, different weight percentage (wt.%) of graphene oxide (GO) was used with
titanium dioxide (TiO2) as photoelectrode in DSSCs. GO was
synthesized by simplified Hummer’s method at ambient temperature. The amount of
GO in composite film are designed from 0.0 wt.%, 0.4 wt.%, 0.6 wt. % and 0.8
wt.%. The prepared samples were characterized by Field Emission Scanning
Electron Microscopy (FESEM), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM)
and Incident Photon to Current Efficiency (IPCE). The photocurrent-voltage
characteristics of the fabricated dye sensitized solar cells were examined
using a solar simulator under 100 mW/cm2 AM 1.5 xenon illumination.
The results indicated that optimum the power conversion efficiency (PCE) was
obtained for the device doped with 0.6 wt.% GO with the short circuit current
density (Jsc), open circuit voltage (Voc) and PCE of 9.8 mA/cm2,
0.7 V and 3.7 %, respectively. It was observed that the introduction of 0.6
wt.% GO into TiO2 photoelectrode has successfully increased the
performance of DSSCs as much as 28% compared to the sample without GO. This is
due to the increment in dye absorption and enhanced electron transportation as
proven by IPCE analysis.
Keywords: dye sensitized solar cells, graphene oxide,
photoelectrode, power conversion efficiency, titanium dioxide
Abstrak
Sel suria pemeka warna (DSSCs) adalah salah satu sel
fotovolta yang telah menarik minat penyelidik sejak kebelakangan ini. Dalam
kajian ini, peratusan berat grafin oksida (GO) yang berbeza telah digunakan
bersama titanium dioksida (TiO2) sebagai fotoelektrod di dalam
DSSCs. GO telah disintesis dengan kaedah Hummer dipermudah pada suhu
persekitaran. Jumlah GO dalam filem komposit telah ditetapkan dari 0.0 wt.%,
0.4 wt.%. 0.6 wt.% dan 0.8 wt.%. Sampel-sampel yang disediakan telah dicirikan
dengan menggunakan analilsis Mikroskopi Imbasan Pancaran Medan Elektron
(FESEM), Analisis Pembelauan sinar-X (XRD), Analisis Mikroskopi Daya Atom (AFM)
dan analisis kejadian foton kepada
keberkesanan pembawa arus (IPCE). Ciri – ciri fotoarus-voltan bagi sel suria
pemeka warna telah diperiksa menggunakan simulator suria dengan intensiti
dikawal pada 100 mW/cm2 AM 1.5 pengcahayaan. Keputusan menunjukkan
bahawa kecekapan penukaran kuasa (PCE) yang optimum telah dicatatkan oleh
peranti DSSC yang ditambah 0.6 wt.% GO, dengan ketumpatan arus litar-pintas (Jsc), voltan litar-terbuka (Voc) dan PCE masing-masing
adalah 9.8 mA/cm2, 0.7 V dan 3.7 %. Ini jelas menunjukkan bahawa
penambahan 0.6 wt.% GO ke dalam TiO2 fotoelektrod telah meningkatkan
kecekapan prestasi bagi DSSCs sebanyak 28% berbanding dengan sampel tanpa GO.
Peningkatan ini disebabkan oleh peningkatan penyerapan pewarna dan pengangkutan
elektron seperti yang dibuktikan dalam analisis IPCE.
Kata kunci:
sel suria pemeka warna, grafin oksida, fotoelektrod, kecekapan penukaran
kuasa, titanium dioxide
References
1.
O’Regan,
B. and Grätzel, M. (1991). A low-cost, high-efficiency solar-cell based on
dye-sensitized colloidal TiO2 films. Nature, 353: 737 – 740.
2.
Gong, J., Liang, J. and Sumathy, K. (2012). Review on
dye-sensitized solar cells (DSSCs): fundamental concepts and novel material. Renewable Sustainable Energy Reviews,
16: 5848 – 5860.
3.
Zhang, S., Yang, X., Numata, Y. and Han, L. (2013). Highly efficient
dye-sensitized solar cells: Progress and future challenges. Energy Environment Science, 6: 1443 –
1464.
4.
Smestad,
G.P. and Grätzel, M. (1998). Demonstrating electron transfer and
nanotechnology: A natural dye-sensitized nanocrystalline energy converter. Journal of Chemical Education, 75: 752 – 756.
5.
Grätzel,
M. (2004). Conversion of sunlight to electric power by nanocrystalline
dye-sensitized solar cells. Journal of
Photochemistry and Photobiology, 164: 3 − 14.
6.
Fang,
X., Li, M., Guo, K., Hu, Y. Z., Liu, X., Chen, B. and Zhao, X. (2012). Improved
properties of dye-sensitized solar cells by incorporation of graphene into the
photoelectrodes. Electrochimica Acta, 65: 174 – 178.
7.
Tang,
B., Hu, G., Gao, H. and Shi, Z. (2013). Three-dimensional graphene network
assisted high performance dye sensitized solar cells. Journal of Power
Sources, 234: 60 – 68.
8.
Yen,
C. Y., Lin, Y. F., Liao, S. H., Weng, C. C., Huang, C. C., Hsiao, Y. H., Ma, C.
C. M., Chang, M. C., Shao, H., Tsai, M.
C., Hsieh, C. K., Tsai, C.H. and Weng, F. B. (2008). Preparation and properties
of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar
cells. Nanotechnology, 19(37):
375305.
9.
Hu,
L. H., Dai, S. Y., Weng, J., Xiao, S. F., Sui, Y. F., Huang, Y., Chen, S.,
Kong, F., Pan, X. and Liang, L. (2007). Microstructure design of nanoporous TiO2
photoelectrodes for dye sensitized solar cell modules. Journal of Physical Chemistry B, 111: 358 − 362.
10.
Bai,
Y., Yu, H., Li, Z., Amal, R., Lu, G. Q. M. and Wang, L. (2012). In-situ growth
of a ZnO nanowire network within a TiO2 nanoparticle film for
enhanced dye-sensitized solar cell performance. Advance Material, 24: 5850 − 5856.
11.
Mane,
R. S., Lee, W. J., Pathan, H. M. and Han, S. H. (2005). Nanocrystalline TiO2/ZnO
thin films: fabrication and application to dye sensitized solar cells. Journal of Physical Chemistry B, 109: 24254 − 24259.
12.
Sun,
S., Gao, L. and Liu, Y. (2010). Enhanced dye-sensitized solar cell using
graphene-TiO2 photoanode prepared by heterogeneous coagulation. Applied Physics Letters, 96: 083113.
13.
Yang,
N. L., Zhai, J. Wang, D., Chen, Y. S. and Jiang, L. (2010). Two-dimensional graphene bridges enhanced
photoinduced charge transport in dye-sensitized solar cells. ACS Nano, 4(2): 887 – 894.
14.
Zhu,
C. Z., Wang, S. J. P., Xing, L. Y., Fang, X., Zhai, Y. M. and Dong, S. J.
(2010). One-pot, water-phase approach
to high-quality graphene/TiO2 composite nanosheets. Chemical Communications, 46(38): 7148 – 7150.
15.
Tang,
Y. B., Lee, C. S., Xu, J., Liu, Z. T., Chen, Z. H., He, Z. B., Cao, Y. L.,
Yuan, G.D., Song, H. S., Chen, L. M. Luo, L. B., Cheng, H. M. Zhang, W.J.,
Bello, I. and Lee, S. T. (2010). Incorporation
of graphenes in nanostructured TiO2 films via molecular grafting for
dye-sensitized solar cell application. ACS Nano, 4(6): 3482 – 3488.
16.
Huang,
N. M., Lim, H. N., Chia, C. H., Yarmo, M. A. and Muhamad, M. R. (2011). Simple
room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine,
6: 3443 – 3448.
17.
Su, C. Y., Xu, Y.
and Zhang, W. (2009). Electrical
and spectroscopic characterizations of ultra-large reduced graphene oxide
monolayers. Chemistry of
Materials, 21:
5674 – 5680.
18.
Zhao, J., Pei, S., Ren, W., Gao, L. and Cheng, H. M. (2010). Efficient
preparation of large-area graphene oxide sheets for transparent conductive
films. ACS Nano, 4: 5245 – 5252.
19.
Yen,
M., Hsiao, M., Liao, S., Liu, P., Tsai, H., Ma, C., Pu, N. and Ger, M. (2011).
Preparation of graphene/multi-walled carbon nanotube hybrid and its use as
photoanodes of dye-sensitized solar cells. Carbon,
49: 3597 – 3606.
20.
He,
Z., Guai, G., Liu, J., Guo, C., Loo, J., Li, C. and Tan, T. (2011).
Nanostructure control of graphene composited TiO2 by a one-step
solvothermal approach for high performance dye-sensitized solar cells. Nanoscale, 3: 4613 – 4616.
21.
Yen,
C., Lin, Y., Hung, C., Tseng, Y., Ma, C., Chang, M. and Shao, H. (2008). The
effects of synthesis procedures on the morphology and photocatalytic activity
of multiwalled carbon nanotubes/TiO2 nanocomposites. Nanotechnology, 19: 045604.
22.
Wang,
H., Leonard, S. L. and Hu, Y. H. (2012). Promoting effect of graphene on
dye-sensitized solar cells. American
Chemical Society, Industrial and Engineering Chemistry Research, 51: 10613 – 10620.
23.
Kopidakis,
N., Benkstein, K. D., Van de Lagemaat J. and Frank, A. J. (2003).
Transport-limited recombination of photocarriers in dye-sensitized
nanocrystalline TiO2 solar cells.
Journal of Physical Chemistry B, 107: 11307 – 11315.
24.
Kim,
D. Y., Joshi, B. N., Park, J. J., Lee, J. G., Cha, Y. H., Seong, T. Y., Noh, S.
I., Ahn, H. J., Al-Deyabe, S. S. and Yoon, S. S. (2014). Graphene-titania films
by supersonic kinetic spraying for enhanced performance of dye sensitized solar
cells. Ceramics International, 40: 11089 – 11097.
25.
Salam,
Z., Vijayakumar, E., Subramania, A., Sivasankar, N. and Mallick, S. (2015).
Graphene quantum dots decorated electrospun TiO2 nanofibers as an
effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 143: 250 – 259.
26.
Chang,
J., Yang, J., Ma, P., Wu, D., Tian, L., Gao, Z., Jiang, K. and Yang L. (2012).
Hierarchical titania mesoporous sphere/graphene composite, synthesis and
application as photoanode in dye sensitized solar cells. Journal of Colloid and Interface Science, 394: 231 – 236.
27.
Liu,
R., Yang, W. D. and Qiang, L. S. (2012). Enhanced efficiency for dye-sensitized
solar cells using a surface-treated photo-anode. Journal of Power Sources, 199: 418 – 425.
28.
Tang,
Y. B., Lee, C. S., Xu, J., Liu, Z. T., Chen, Z. H., He, Z., Cao, Y. L., Yuan,
G., Song, H. Chen, L., Luo, L., Chen, H. M., Cheng, W., Zhang, J., Bello, I.
and Lee, S. T. (2010). Incorporation of graphenes in nanostructured TiO2
films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 4: 3482 – 3488.
29.
Wang,
P., Wang, J., Wang, X., Yu, H., Yu, J., Lei, M. and Wang, Y. (2013). One-step
synthesis of easy-recycling TiO2–rGO nanocomposite photocatalysts
with enhanced photocatalytic activity.
Applied Catalysis B: Environmental, 132: 452 – 459.
30.
Zhang,
H., Lv, X., Li, Y., Wang, Y. and Li, J. (2010). P25-graphene composite as a
high performance photocatalyst. American Chemical Society Nano,
4: 380 – 386.
31.
Luan,
X., Chen, L., Zhang, J., Qu, G., Flake, J. C. and Wang, Y. (2013).
Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2
nanotube arrays for dye-sensitized solar cells. Electrochimica Acta, 111: 216 – 222.
32.
Tsai,
T. H., Chiou, S. C. and Chen, S. M. (2011). Enhancement of dye-sensitized solar
cells by using graphene-TiO2 composites as photoelectrochemical
working electrode. International Journal of
Electrochemical Science, 6: 3333 – 3343.
33.
Andrade,
L., Sousa, J., Ribeiro, H. A. and Mendes, A. (2011). Phenomenological modeling
of dye-sensitized solar cells under transient conditions. Solar
Energy, 85: 781 – 793.
34.
Shu,
W., Liu, Y., Peng, Z., Chen, K., Zhang, C. and Chen, W. (2013). Synthesis and
photovoltaic performance of reduced graphene oxide-TiO2 nanoparticles composites by solvothermal method.
Journal of Alloys and Compounds,
563: 229 – 233.
35.
Yang,
N., Zhai, J., Wang, D., Chen, Y. S. and Jiang, L. (2010). Two-dimensional
graphene bridges enhanced photoinduced charge transport in dye sensitized solar
cells. ACS Nano, 4: 887 – 894.
36.
Zhao,
J., Wu, J., Yu, F., Zhang, X., Lan, Z. and Lin, J. (2013). Improving the
photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell
by graphene/titania photoanode. Electrochimica
Acta, 96: 110 – 116.
37.
Koide,
N., Islam, A., Chiba, Y. and Han, L. (2006). Improvement of efficiency of
dye-sensitized solar cells based on
analysis of equivalent circuit. Journal
of Photochemistry and Photobiology A. Chemistry, 182: 296 – 305.