Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 928 - 940

DOI: https://doi.org/10.17576/mjas-2017-2104-20

 

 

 

PERFORMANCE ENHANCEMENT OF DYE SENSITIZED SOLAR CELL USING GRAPHENE OXIDE DOPED TITANIUM DIOXIDE PHOTOELECTRODE

 

(Peningkatan Prestasi Bagi Sel Suria Pemeka Warna Menggunakan Grafin Oksida di dalam Titanium Dioksida Sebagai Fotoelektrod)

 

Ahmad Muslihin Ramli, Mohd Zikri Razali, Norasikin Ahmad Ludin*

 

Solar Energy Research Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: sheekeen@ukm.edu.my

 

 

Received: 28 November 2016; Accepted: 27 April 2017

 

 

Abstract

Dye-sensitized solar cell (DSSCs) is one of the photovoltaic cells that have attracted extensive research over decade. In this study, different weight percentage (wt.%) of graphene oxide (GO) was used with titanium dioxide (TiO2) as photoelectrode in DSSCs. GO was synthesized by simplified Hummer’s method at ambient temperature. The amount of GO in composite film are designed from 0.0 wt.%, 0.4 wt.%, 0.6 wt. % and 0.8 wt.%. The prepared samples were characterized by Field Emission Scanning Electron Microscopy (FESEM), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Incident Photon to Current Efficiency (IPCE). The photocurrent-voltage characteristics of the fabricated dye sensitized solar cells were examined using a solar simulator under 100 mW/cm2 AM 1.5 xenon illumination. The results indicated that optimum the power conversion efficiency (PCE) was obtained for the device doped with 0.6 wt.% GO with the short circuit current density (Jsc), open circuit voltage (Voc) and PCE of 9.8 mA/cm2, 0.7 V and 3.7 %, respectively. It was observed that the introduction of 0.6 wt.% GO into TiO2 photoelectrode has successfully increased the performance of DSSCs as much as 28% compared to the sample without GO. This is due to the increment in dye absorption and enhanced electron transportation as proven by IPCE analysis.

 

Keywords:  dye sensitized solar cells, graphene oxide, photoelectrode, power conversion efficiency, titanium dioxide

 

Abstrak

Sel suria pemeka warna (DSSCs) adalah salah satu sel fotovolta yang telah menarik minat penyelidik sejak kebelakangan ini. Dalam kajian ini, peratusan berat grafin oksida (GO) yang berbeza telah digunakan bersama titanium dioksida (TiO2) sebagai fotoelektrod di dalam DSSCs. GO telah disintesis dengan kaedah Hummer dipermudah pada suhu persekitaran. Jumlah GO dalam filem komposit telah ditetapkan dari 0.0 wt.%, 0.4 wt.%. 0.6 wt.% dan 0.8 wt.%. Sampel-sampel yang disediakan telah dicirikan dengan menggunakan analilsis Mikroskopi Imbasan Pancaran Medan Elektron (FESEM), Analisis Pembelauan sinar-X (XRD), Analisis Mikroskopi Daya Atom (AFM) dan  analisis kejadian foton kepada keberkesanan pembawa arus (IPCE). Ciri – ciri fotoarus-voltan bagi sel suria pemeka warna telah diperiksa menggunakan simulator suria dengan intensiti dikawal pada 100 mW/cm2 AM 1.5 pengcahayaan. Keputusan menunjukkan bahawa kecekapan penukaran kuasa (PCE) yang optimum telah dicatatkan oleh peranti DSSC yang ditambah 0.6 wt.% GO, dengan ketumpatan arus litar-pintas (Jsc), voltan litar-terbuka (Voc) dan PCE masing-masing adalah 9.8 mA/cm2, 0.7 V dan 3.7 %. Ini jelas menunjukkan bahawa penambahan 0.6 wt.% GO ke dalam TiO2 fotoelektrod telah meningkatkan kecekapan prestasi bagi DSSCs sebanyak 28% berbanding dengan sampel tanpa GO. Peningkatan ini disebabkan oleh peningkatan penyerapan pewarna dan pengangkutan elektron seperti yang dibuktikan dalam analisis IPCE.

 

Kata kunci:  sel suria pemeka warna, grafin oksida, fotoelektrod, kecekapan penukaran kuasa, titanium dioxide

 

References

1.       O’Regan, B. and Grätzel, M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353: 737 – 740.

2.       Gong, J., Liang, J. and Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel material. Renewable Sustainable Energy Reviews, 16: 5848 – 5860.

3.       Zhang, S., Yang, X., Numata, Y. and Han, L. (2013). Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy Environment Science, 6: 1443 – 1464.

4.       Smestad, G.P. and Grätzel, M. (1998). Demonstrating electron transfer and nanotechnology: A natural dye-sensitized nanocrystalline energy converter. Journal of Chemical Education, 75: 752 – 756.

5.       Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology, 164: 3 − 14.

6.       Fang, X., Li, M., Guo, K., Hu, Y. Z., Liu, X., Chen, B. and Zhao, X. (2012). Improved properties of dye-sensitized solar cells by incorporation of graphene into the photoelectrodes. Electrochimica Acta, 65: 174 – 178.

7.       Tang, B., Hu, G., Gao, H. and Shi, Z. (2013). Three-dimensional graphene network assisted high performance dye sensitized solar cells. Journal of Power Sources, 234: 60 – 68.

8.       Yen, C. Y., Lin, Y. F., Liao, S. H., Weng, C. C., Huang, C. C., Hsiao, Y. H., Ma, C. C. M.,  Chang, M. C., Shao, H., Tsai, M. C., Hsieh, C. K., Tsai, C.H. and Weng, F. B. (2008). Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells. Nanotechnology, 19(37): 375305.

9.       Hu, L. H., Dai, S. Y., Weng, J., Xiao, S. F., Sui, Y. F., Huang, Y., Chen, S., Kong, F., Pan, X. and Liang, L. (2007). Microstructure design of nanoporous TiO2 photoelectrodes for dye sensitized solar cell modules. Journal of Physical Chemistry B, 111: 358 − 362.

10.    Bai, Y., Yu, H., Li, Z., Amal, R., Lu, G. Q. M. and Wang, L. (2012). In-situ growth of a ZnO nanowire network within a TiO2 nanoparticle film for enhanced dye-sensitized solar cell performance. Advance Material, 24: 5850 − 5856.

11.    Mane, R. S., Lee, W. J., Pathan, H. M. and Han, S. H. (2005). Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye sensitized solar cells. Journal of Physical Chemistry B, 109: 24254 − 24259.

12.    Sun, S., Gao, L. and Liu, Y. (2010). Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Applied Physics Letters, 96: 083113.

13.    Yang, N. L., Zhai, J. Wang, D., Chen, Y. S. and Jiang, L. (2010). Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano, 4(2): 887 – 894.

14.    Zhu, C. Z., Wang, S. J. P., Xing, L. Y., Fang, X., Zhai, Y. M. and Dong, S. J. (2010). One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chemical Communications, 46(38): 7148 – 7150.

15.    Tang, Y. B., Lee, C. S., Xu, J., Liu, Z. T., Chen, Z. H., He, Z. B., Cao, Y. L., Yuan, G.D., Song, H. S., Chen, L. M. Luo, L. B., Cheng, H. M. Zhang, W.J., Bello, I. and Lee, S. T. (2010). Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 4(6): 3482 – 3488.

16.    Huang, N. M., Lim, H. N., Chia, C. H., Yarmo, M. A. and Muhamad, M. R. (2011). Simple room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine, 6: 3443 – 3448.

17.    Su, C. Y., Xu, Y. and Zhang, W. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21: 5674 – 5680.

18.    Zhao, J., Pei, S., Ren, W., Gao, L. and Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4: 5245 – 5252.

19.    Yen, M., Hsiao, M., Liao, S., Liu, P., Tsai, H., Ma, C., Pu, N. and Ger, M. (2011). Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells. Carbon, 49: 3597 – 3606.

20.    He, Z., Guai, G., Liu, J., Guo, C., Loo, J., Li, C. and Tan, T. (2011). Nanostructure control of graphene composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. Nanoscale, 3: 4613 – 4616.

21.    Yen, C., Lin, Y., Hung, C., Tseng, Y., Ma, C., Chang, M. and Shao, H. (2008). The effects of synthesis procedures on the morphology and photocatalytic activity of multiwalled carbon nanotubes/TiO2 nanocomposites. Nanotechnology, 19: 045604.

22.    Wang, H., Leonard, S. L. and Hu, Y. H. (2012). Promoting effect of graphene on dye-sensitized solar cells. American Chemical Society, Industrial and Engineering Chemistry Research, 51: 10613 – 10620.

23.    Kopidakis, N., Benkstein, K. D., Van de Lagemaat J. and Frank, A. J. (2003). Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. Journal of Physical Chemistry B, 107: 11307 – 11315.

24.    Kim, D. Y., Joshi, B. N., Park, J. J., Lee, J. G., Cha, Y. H., Seong, T. Y., Noh, S. I., Ahn, H. J., Al-Deyabe, S. S. and Yoon, S. S. (2014). Graphene-titania films by supersonic kinetic spraying for enhanced performance of dye sensitized solar cells. Ceramics International, 40: 11089 – 11097.

25.    Salam, Z., Vijayakumar, E., Subramania, A., Sivasankar, N. and Mallick, S. (2015). Graphene quantum dots decorated electrospun TiO2 nanofibers as an effective photoanode for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 143: 250 – 259.

26.    Chang, J., Yang, J., Ma, P., Wu, D., Tian, L., Gao, Z., Jiang, K. and Yang L. (2012). Hierarchical titania mesoporous sphere/graphene composite, synthesis and application as photoanode in dye sensitized solar cells. Journal of Colloid and Interface Science, 394: 231 – 236.

27.    Liu, R., Yang, W. D. and Qiang, L. S. (2012). Enhanced efficiency for dye-sensitized solar cells using a surface-treated photo-anode. Journal of Power Sources, 199: 418 – 425.

28.    Tang, Y. B., Lee, C. S., Xu, J., Liu, Z. T., Chen, Z. H., He, Z., Cao, Y. L., Yuan, G., Song, H. Chen, L., Luo, L., Chen, H. M., Cheng, W., Zhang, J., Bello, I. and Lee, S. T. (2010). Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application. ACS Nano, 4: 3482 – 3488.

29.    Wang, P., Wang, J., Wang, X., Yu, H., Yu, J., Lei, M. and Wang, Y. (2013). One-step synthesis of easy-recycling TiO2–rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 132: 452 – 459.

30.    Zhang, H., Lv, X., Li, Y., Wang, Y. and Li, J. (2010). P25-graphene composite as a high performance photocatalyst. American Chemical Society Nano, 4: 380 – 386.

31.    Luan, X., Chen, L., Zhang, J., Qu, G., Flake, J. C. and Wang, Y. (2013). Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells. Electrochimica Acta, 111: 216 – 222.

32.    Tsai, T. H., Chiou, S. C. and Chen, S. M. (2011). Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode. International Journal of Electrochemical Science, 6: 3333 – 3343.

33.    Andrade, L., Sousa, J., Ribeiro, H. A. and Mendes, A. (2011). Phenomenological modeling of dye-sensitized solar cells under transient conditions. Solar Energy, 85: 781 – 793.

34.    Shu, W., Liu, Y., Peng, Z., Chen, K., Zhang, C. and Chen, W. (2013). Synthesis and photovoltaic performance of reduced graphene oxide-TiO2 nanoparticles composites by solvothermal method. Journal of Alloys and Compounds, 563: 229 – 233.

35.    Yang, N., Zhai, J., Wang, D., Chen, Y. S. and Jiang, L. (2010). Two-dimensional graphene bridges enhanced photoinduced charge transport in dye sensitized solar cells. ACS Nano, 4: 887 – 894.

36.    Zhao, J., Wu, J., Yu, F., Zhang, X., Lan, Z. and Lin, J. (2013). Improving the photovoltaic performance of cadmium sulfide quantum dots-sensitized solar cell by graphene/titania photoanode. Electrochimica Acta, 96: 110 – 116.

37.    Koide, N., Islam, A., Chiba, Y. and Han, L. (2006). Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology A. Chemistry, 182: 296 – 305.




Previous                    Content                    Next