Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 921 - 927

DOI: https://doi.org/10.17576/mjas-2017-2104-19

 

 

 

CARBON DIOXIDE SORPTION BY TETRADECYLAMINE SUPPORTED ON SILICA GEL

 

(Serapan Karbon Dioksida Oleh Tetradesilamina Disokong Pada Silika Gel)

 

Maratun Najiha Abu Tahari1*, Azizul Hakim1, Tengku Sharifah Marliza2, Mohd. Ambar Yarmo1

 

1School of Chemical Science and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Catalysis Science and Technology Research Centre, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: maratunnajiha@gmail.com

 

 

Received: 28 November 2016; Accepted: 27 April 2017

 

 

Abstract

Carbon dioxide emissions generated from fossil fuel-based power plants and other industries has reached 400 ppm in atmosphere. This negatively impact the environment, infrastructures and wildlife in particular. A lot of efforts are needed to produce CO2 gas sorbent in order to reduce high CO2 concentration. Therefore, porous silica gel (SG) is modified with amine compound for carbon dioxide capture. Calcinated silica gel functionalized with tetradecylamine (TDA) using wet impregnation has been developed as a porous media. The prepared sorbents is characterized by N2 physisorption technique Brunauer-Emmet-Teller analysis (BET). Significant changes in physical properties of the sorbents further ascertained the dispersion of TDA on the internal channels and external surface of the SG. Reactivity of porous sorbent towards CO2 was evaluated using isothermal CO2 adsorption desorption technique. This study shows 65TDA/SG enable to adsorb CO2 in the highest capacity which is 23.22 cm3 CO2 per gram sorbent. Moreover, CO2 capture consists of two type sorption which are physisorption and chemisorption. 55TDA/SG is the best sorbent in capturing CO2 by chemisorption (19.62 cm3 CO2 per gram adsorbent).

 

Keywords:  tetradecylamine, modified silica gel, carbon dioxide, chemisorption, physisorption

 

Abstrak

Pembebasan karbon dioksida terhasil daripada plan penghasilan tenaga berasaskan bahan api fosil dan pelbagai industri telah mencecah kepekatan 400 ppm di atmosfera. Perkara ini memberi kesan negatif kepada alam sekitar, infrastruktur dan kehidupan liar khasnya. Pelbagai usaha diperlukan untuk menghasilkan penjerap gas CO2 dalam usaha untuk merendahkan kepekatan CO2 yang semakin meningkat ini. Oleh itu, silika gel berliang (SG) telah di ubahsuai dengan sebatian amina untuk pemerangkapan karbon dioksida. Silika gel yang telah dikalsin akan difungsikan dengan teteradesilamina (TDA) menggunakan kaedah impregnasi basah telah dibangunkan sebagai media berliang. Penjerap yang dihasilkan akan dicirikan dengan teknik jerapan fizikal N2 iaitu analisis Brunauer-Emmet-Teller (BET). Perubahan ciri fizikal yang ketara pada penjerap mengukuhkan lagi sebaran TDA pada permukaan dalam liang dan juga permukaan luaran SG. Kereaktifan penjerap berliang terhadap CO2 telah dinilai menggunakan teknik penjerapan dan penyahjerapan isoterma CO2. Hasil kajian ini menunjukkan bahawa 65TDA/SG mampu menjerap CO2 dalam kapasiti yang tertinggi sebanyak 23.22 cm3 CO2 per gram penjerap. Tambahan, pemerangkapan CO2 terdiri daripada dua jenis serapan iaitu serapan fizikal dan jerapan kimia. Penjerap 55TDA/SG adalah penjerap terbaik dalam pemerangkapan CO2 secara jerapan kimia (19.62 cm3 CO2 per gram penjerap).

 

Kata kunci:  tetradesilamina, SG di ubahsuai, karbon dioksida, jerapan kimia, serapan fizikal

 

References

1.       Pevida, C., Plaza, M. G., Arias, B., Fermoso, J., Rubiera, F. and Pis, J. J. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86: 2204 – 2212.

2.       Lee, S. C., Hsieh, C. C., Chen, C. H. and Chen, Y. S. (2013). CO2 adsorption by y-type zeolite impregnated with amines in indoor air. Aerosol Air Quality Research, 13: 360 – 366.

3.       Samanta, A. and Bandyopadhyay, S. S. (2009). Absorption of carbon dioxide into aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 64: 1185 – 1194.

4.       Anson, A., Lina, C. C. H., Kuznickia, S. M. and Sawadab, J. A. (2009). Adsorption of carbon dioxide, ethane and methane on titanosilicate type molecular sieves. Chemical Engineering Science, 64: 3683 –3687.

5.       An, H., Feng, B. and Su, S. (2011). CO2 capturer by electrothermal swing adsorption with activated carbon fibre materials. International Journal of Greenhouse Gas Control, 5: 16 – 25.

6.       Zhao, G. Y., Aziz, B. and Hedin, N. (2010). Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs. Applied Energy, 87: 2907 – 2913.

7.       Brunetti, A., Scura, F., Barbier, G. and Drioli, E. (2010). Membrane technology for CO2 separation. Journal of Membrane Science, 359: 115 – 125.

8.       Tahari, M. N. A. and Yarmo, M. A. (2014). Adsorption of CO2 on silica dioxide catalyst imoregnated with various alkylamine. AIP Conference Proceeding, 1614: 334 – 341.

9.       Belmabkhout, Y., Serna-Guerrero, R. and Sayari, A. (2010). Amine-bearing mesoporous silica for CO2 removal from dry and humid air. Chemical Engineering Science, 65: 3695 – 3698.

10.    Gray, M., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens Jr., R. W., Khatri, R., Chuang, S. S. C. and Fiburn, T. (2005). Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology, 36: 1449 – 1455.

11.    Knowles, G. P., Graham, J. V., Delaney S. W. and Chaffe, A. L. (2005). Aminopropyl-functionalized mesoporous silica as CO2 adsorbents. Fuel Processing Technology, 86: 1435 – 1448.

12.    Shaw, D. J. (1980). Introductio to Colloid and Surface Chemistry. 3rd Edition. Liverpool: Butterworth & Co Ltd.

13.    Bacsik, Z., Ahlsten, N., Ziadi, A., Zhao, G., Garcia-Bennett, A. E., Martin-Matute, B. and Hedin, N. (2001). Mechanisme and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-Propylamine. Langmuir 27: 11118 - 11128.

14.    Tahari, M. N. A., Hakim, A., Wahab, M. and Yarmo, M. A. (2016). Modification of porous materials by saturated  fattry  amine  as  CO2  capturer. International Journal of Chemical Engineering and Applications, 6: 2 – 7.

15.    Chernyshova, I. V. (2011). Near infrared spectroscopic characterization of surface hydroxyl groups on hydrothermally  treated  silica  gel.  International  Journal  of Chemical and Environment Engineering, 2 (1): 27 32.

16.    Belman, N., Israelachvili, J. N., Li, Y., Safinya, C. R., Bernstein, J. and Golan, Y. (2009). The temperature-dependent structure of alkylamines and their corresponding alkylammonium-alkylcarbamates. Journal of the American Chemical Society, 131(25): 9107 9113.

17.    International Union of Pure and Applied Chemistry (1972). Manual of symbols and terminology, colloid and surface chemistry. Pure Applied Chemistry, 31: 578.

18.    Kamarudin, K. S. N. and Alias, N.  (2013). Adsorption performance of MCM-41 impregnated with amine for CO2 removal. Fuel Processing Technology, 106(41): 332 – 337.




Previous                    Content                    Next