Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 921 - 927
DOI:
https://doi.org/10.17576/mjas-2017-2104-19
CARBON DIOXIDE SORPTION BY TETRADECYLAMINE SUPPORTED
ON SILICA GEL
(Serapan Karbon Dioksida Oleh Tetradesilamina
Disokong Pada Silika Gel)
Maratun Najiha Abu Tahari1*,
Azizul Hakim1, Tengku Sharifah Marliza2, Mohd. Ambar
Yarmo1
1School of Chemical Science and Food Technology,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Catalysis Science and Technology Research Centre,
Faculty of Science,
Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding author: maratunnajiha@gmail.com
Received: 28
November 2016; Accepted: 27 April 2017
Abstract
Carbon dioxide emissions generated from fossil
fuel-based power plants and other industries has reached 400 ppm in atmosphere.
This negatively impact the environment, infrastructures and wildlife in
particular. A lot of efforts are needed to produce CO2 gas sorbent
in order to reduce high CO2 concentration. Therefore, porous silica
gel (SG) is modified with amine compound for carbon dioxide capture. Calcinated
silica gel functionalized with tetradecylamine (TDA) using wet impregnation has
been developed as a porous media. The prepared sorbents is characterized by N2
physisorption technique Brunauer-Emmet-Teller
analysis (BET). Significant changes in physical properties of the sorbents further
ascertained the dispersion of TDA on the internal channels and external surface
of the SG. Reactivity of porous sorbent towards CO2 was evaluated
using isothermal CO2 adsorption desorption technique. This study
shows 65TDA/SG enable to adsorb CO2 in the highest capacity which is
23.22 cm3 CO2 per gram sorbent. Moreover, CO2 capture
consists of two type sorption which are physisorption and chemisorption. 55TDA/SG
is the best sorbent in capturing CO2 by chemisorption (19.62 cm3
CO2 per gram adsorbent).
Keywords: tetradecylamine,
modified silica gel, carbon dioxide, chemisorption, physisorption
Abstrak
Pembebasan
karbon dioksida terhasil daripada plan penghasilan tenaga berasaskan bahan api
fosil dan pelbagai industri telah mencecah kepekatan 400 ppm di atmosfera. Perkara
ini memberi kesan negatif kepada alam sekitar, infrastruktur dan kehidupan liar
khasnya. Pelbagai usaha diperlukan untuk menghasilkan penjerap gas CO2
dalam usaha untuk merendahkan kepekatan CO2 yang semakin meningkat
ini. Oleh itu, silika gel berliang (SG) telah di ubahsuai dengan sebatian amina
untuk pemerangkapan karbon dioksida. Silika gel yang telah dikalsin akan
difungsikan dengan teteradesilamina (TDA) menggunakan kaedah impregnasi basah
telah dibangunkan sebagai media berliang. Penjerap yang dihasilkan akan
dicirikan dengan teknik jerapan fizikal N2 iaitu analisis Brunauer-Emmet-Teller
(BET). Perubahan ciri fizikal yang ketara pada penjerap mengukuhkan lagi
sebaran TDA pada permukaan dalam liang dan juga permukaan luaran SG. Kereaktifan
penjerap berliang terhadap CO2 telah dinilai menggunakan teknik penjerapan
dan penyahjerapan isoterma CO2. Hasil kajian ini menunjukkan bahawa
65TDA/SG mampu menjerap CO2 dalam kapasiti yang tertinggi sebanyak
23.22 cm3 CO2 per gram penjerap. Tambahan, pemerangkapan
CO2 terdiri daripada dua jenis serapan iaitu serapan fizikal dan
jerapan kimia. Penjerap 55TDA/SG adalah penjerap terbaik dalam pemerangkapan CO2
secara jerapan kimia (19.62 cm3 CO2 per gram penjerap).
Kata kunci: tetradesilamina, SG
di ubahsuai, karbon dioksida, jerapan kimia, serapan fizikal
References
1.
Pevida, C., Plaza, M. G., Arias, B., Fermoso, J.,
Rubiera, F. and Pis, J. J. (2007). CO2 capture by adsorption with
nitrogen enriched carbons. Fuel, 86:
2204 – 2212.
2.
Lee,
S. C., Hsieh, C. C., Chen, C. H. and Chen, Y. S. (2013). CO2 adsorption
by y-type zeolite impregnated with amines in indoor air. Aerosol Air Quality Research, 13: 360 – 366.
3.
Samanta,
A. and Bandyopadhyay, S. S. (2009). Absorption of carbon dioxide into aqueous
solution of piperazine activated 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 64: 1185 –
1194.
4.
Anson,
A., Lina, C. C. H., Kuznickia, S. M. and Sawadab, J. A. (2009). Adsorption of
carbon dioxide, ethane and methane on titanosilicate type molecular sieves. Chemical Engineering Science, 64: 3683 –3687.
5.
An,
H., Feng, B. and Su, S. (2011). CO2 capturer by electrothermal swing
adsorption with activated carbon fibre materials. International Journal of Greenhouse Gas Control, 5: 16 – 25.
6.
Zhao,
G. Y., Aziz, B. and Hedin, N. (2010). Carbon dioxide adsorption on mesoporous
silica surfaces containing amine-like motifs. Applied Energy, 87: 2907 – 2913.
7.
Brunetti,
A., Scura, F., Barbier, G. and Drioli, E. (2010). Membrane technology for CO2
separation. Journal of Membrane Science,
359: 115 – 125.
8.
Tahari,
M. N. A. and Yarmo, M. A. (2014). Adsorption of CO2 on silica
dioxide catalyst imoregnated with various alkylamine. AIP Conference Proceeding, 1614: 334 – 341.
9.
Belmabkhout,
Y., Serna-Guerrero, R. and Sayari, A. (2010). Amine-bearing mesoporous silica
for CO2 removal from dry and humid air. Chemical Engineering Science, 65: 3695 – 3698.
10.
Gray,
M., Soong, Y., Champagne, K. J., Pennline, H., Baltrus, J. P., Stevens Jr., R.
W., Khatri, R., Chuang, S. S. C. and Fiburn, T. (2005). Improved immobilized
carbon dioxide capture sorbents. Fuel
Processing Technology, 36: 1449 – 1455.
11.
Knowles, G. P., Graham, J. V., Delaney S. W. and Chaffe,
A. L. (2005). Aminopropyl-functionalized mesoporous silica as CO2 adsorbents.
Fuel Processing Technology, 86: 1435 –
1448.
12.
Shaw,
D. J. (1980). Introductio to Colloid and Surface Chemistry. 3rd
Edition. Liverpool: Butterworth &
Co Ltd.
13.
Bacsik, Z., Ahlsten, N., Ziadi, A., Zhao, G., Garcia-Bennett,
A. E., Martin-Matute, B. and Hedin, N. (2001). Mechanisme and kinetics for
sorption of CO2 on bicontinuous mesoporous silica modified with
n-Propylamine. Langmuir 27: 11118 - 11128.
14.
Tahari, M. N. A., Hakim, A., Wahab, M. and Yarmo, M. A.
(2016). Modification of porous materials by saturated fattry amine
as CO2 capturer. International Journal of
Chemical Engineering and Applications, 6: 2 – 7.
15.
Chernyshova,
I. V. (2011). Near infrared spectroscopic characterization of surface hydroxyl
groups on hydrothermally treated silica gel.
International
Journal of Chemical and Environment Engineering, 2
(1): 27 –
32.
16.
Belman, N., Israelachvili, J. N., Li, Y., Safinya, C. R.,
Bernstein, J. and Golan, Y. (2009). The temperature-dependent structure of
alkylamines and their corresponding alkylammonium-alkylcarbamates. Journal of the American Chemical Society,
131(25): 9107 – 9113.
17.
International Union of Pure and Applied Chemistry (1972).
Manual of symbols and terminology, colloid and surface chemistry. Pure
Applied Chemistry, 31: 578.
18.
Kamarudin, K. S. N. and Alias, N. (2013). Adsorption performance of MCM-41 impregnated with amine for CO2 removal.
Fuel Processing Technology, 106(41): 332 – 337.