Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 914 - 920

DOI: https://doi.org/10.17576/mjas-2017-2104-18

 

 

 

EFFECT OF ANNEALING STRATEGY ON IMPROVED PHOTOACTIVITY OF CUPROUS OXIDE NANOWIRE PREPARED USING FACILE FABRICATION STRATEGY FOR SOLAR WATER SPLITTING

 

(Kesan Strategi Pengkalsinan Terhadap Peningkatan Fotoaktiviti Nanowayar Kuprous Oksida Yang Disediakan Menggunakan Cara Mudah Untuk Pembelahan Air Suria)

 

Mohd Nur Ikhmal Salehmin1, Lorna Jeffery Minggu1*, Khuzaimah Arifin1, Mohammad Bin Kassim1,2

 

1Fuel Cell Institute

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  lorna_jm@ukm.edu.my

 

 

Received: 28 November 2016; Accepted: 27 April 2017

 

 

Abstract

Cu2O photocathode such as nanowire (NW) have shown to improve photoactivity than that nanoparticle thin film counterpart. This enhancement is attributed to enhanced photocatalytic reaction due to increase in surface active area and effective radial charge diffusion. However, the photoelectrochemical performance of reported work were rather low which need an improvement prior protection. In this study, Cu2O nanowire photocathode was fabricated using sequential wet chemical oxidation method and annealing under inert condition. Focusing on annealing step, the transformation of precursor Cu(OH)2 nanowire to Cu2O nanowire undergone multistep annealing with a different ramping rate under inert condition. The highest photocurrent was then compared with photocurrent generated from Cu2O NW prepared with direct annealing strategy. With multistep annealing, the best photoelectrochemical performance was obtained from Cu2O NW prepared at the highest ramping rate which is 1.2 folds better than that obtained with single step annealing. The photocurrent enhancement obtained in this study was attributed to favourable morphology improving light trapping. Overall, the ampleness of material source, non-toxic, simple fabrication and excellent photocatalytic performance are the pre-requisite to realize solar hydrogen production.

 

Keywords:  cuprous oxide nanowire, photocurrent, water-splitting, hydrogen production

 

Abstrak

Fotokatod Cu2O yang berstrukturkan nano wayar (NW) telah menunjukkan aktiviti foto yang lebih baik berbanding filem nipis. Prestasi fotomangkin yang baik ini disumbang oleh peningkatan luas permukaan yang aktif dan keberkesanan pengaliran cas. Walaubagaimanapun, prestasi fotoelektrokimia yang telah dilaporkan masih lagi rendah dan memerlukan penambahbaikan sebelum penyalutan sebagai perlindungan untuk kestabilan fotokatod. Dalam kajian ini, Cu2O NW fotokatod telah disintesis menggunakan oksidasi kimia dan pengkalsinan dalam keadaan lengai. Pada peringkat pengkalsinan, transformasi pemula Cu(OH)2 nanowayar kepada Cu2O nanowayar telah melalui beberapa langkah pengkalsinan dengan kadar pengkalsinan yang berbeza. Fotoarus yang tertinggi akan dibandingkan dengan fotoarus yang terhasil daripada Cu2O nanowayar yang disediakan menggunakan pengkalsinan terus. Pada pengkalsinan berperingkat, prestasi fotoelektrokimia yang terbaik didapati daripada Cu2O NW yang disediakan pada kadar pengkalsinan yang paling tinggi iaitu 1.2 kali ganda lebih baik berbanding yang didapati daripada pengkalsinan terus. Peningkatan fotoarus yang terhasil daripada kajian ini telah disumbangkan oleh kesan morfologi bahan yang berkeupayaan menyerap cahaya secara efektif. Keseluruhannya, keberadaan sumber bahan yang mencukupi, tidak toksik, cara penyediaan yang mudah, serta prestasi fotomangkin yang bagus adalah keperluan untuk merealisasikan penghasilan hidrogen dari tenaga suria.

 

Kata kunci:  nanowayar kuprous oksida, fotoarus, pembelahan air, penghasilan hidrogen

 

References

1.       Hacialioglu, S., Meng, F. and Jin, S. (2012). Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations. Chemical Communications, 48(8): 1174 – 1176.

2.       De Jongh, P., Vanmaekelbergh, D. and Kelly, J. (1999). Cu2O: Electrodeposition and characterization. Chemistry of Materials, 11(12): 3512 – 3517.

3.       Engel, C. J., Polson, T. A., Spado, J. R., Bell, J. M. and Fillinger, A. (2008). Photoelectrochemistry of Porous P-Cu2o Films. Journal of the Electrochemical Society, 155(3): 37 – 42.

4.       Paracchino, A., Laporte, V., Sivula, K., Grätzel, M. and Thimsen, E. (2011). Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 10(6): 456 – 461.

5.       Hsu, Y.-K., Yu, C.-H., Chen, Y.-C. and Lin, Y.-G. (2013). Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation. Journal of Power Sources, 242: 541 – 547.

6.       Hsu, Y.-K., Yu, C.-H., Chen, Y.-C. and Lin, Y.-G. (2013). Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting. Electrochimica Acta, 105: 62 – 68.

7.       Luo, J., Steier, L., Son, M.-K., Schreier, M., Mayer, M. T. and Grätzel, M. (2016). Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Letters, 16(3): 1848 – 1857.

8.       Li, C., Li, Y. and Delaunay, J.-J. (2013). A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells. ACS Applied Materials & Interfaces, 6(1): 480 – 486.

9.       Zhang, Z., Dua, R., Zhang, L., Zhu, H., Zhang, H. and Wang, P. (2013). Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano, 7(2): 1709 – 1717.

10.    Li, Y., Zhang, X., Chen, H. and Li, Y. (2015). Thermal conversion synthesis of Cu2O photocathode and the promoting effects of carbon coating. Catalysis Communications, 66: 1 – 5.

11.    Dubale, A. A., Su, W.-N., Tamirat, A. G., Pan, C.-J., Aragaw, B. A., Chen, H.-M., Chen, C.-H. and Hwang, B.-J. (2014). The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. Journal of Materials Chemistry A, 2(43): 18383 –18397.

12.    Tilley, S. D., Schreier, M., Azevedo, J., Stefik, M. and Graetzel, M. (2014). Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Advanced Functional Materials, 24(3): 303 – 311.

13.    Paracchino, A., Mathews, N., Hisatomi, T., Stefik, M., Tilley, S. D. and Grätzel, M. (2012). Ultrathin films on copper(I) oxide water splitting photocathodes: A study on performance and stability. Energy & Environmental Science, 5(9): 8673 – 8681.

14.    Morales-Guio, C. G., Tilley, S. D., Vrubel, H., Grätzel, M. and Hu, X. (2014). Hydrogen evolution from a copper (i) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nature Communications, 5: 1 – 7.

15.    Li, C., Hisatomi, T., Watanabe, O., Nakabayashi, M., Shibata, N., Domen, K. and Delaunay, J.-J. (2015). Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy & Environmental Science, 8(5): 1493 – 1500.

16.    Lin, C.-Y., Lai, Y.-H., Mersch, D. and Reisner, E. (2012). Cu2O|NiOX nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chemical Science, 3(12): 3482 –3487.

17.    Zhang, W., Wen, X., Yang, S., Berta, Y. and Wang, Z. L. (2003). Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Advanced Materials, 15(10): 822 – 825.

18.    Lu, C., Qi, L., Yang, J., Zhang, D., Wu, N. and Ma, J. (2004). Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. The Journal of Physical Chemistry B, 108(46): 17825 – 17831.

19.    Kargar, A., Partokia, S. S., Niu, M. T., Allameh, P., Yang, M., May, S., Cheung, J. S., Sun, K., Xu, K. and Wang, D. (2014). Solution-grown 3D Cu2O networks for efficient solar water splitting. Nanotechnology, 25(20): 1 – 9.

20.    Kim, T. G., Oh, H.-B., Ryu, H. and Lee, W.-J., (2014). The study of post annealing effect on Cu2O thin-films by electrochemical deposition for photoelectrochemical applications. Journal of Alloys and Compounds, 612: 74 – 79.

21.    Wilkinson, F. (1986). Diffuse reflectance flash photolysis. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 82(12): 2073 – 2081.

22.    Murphy, A., Barnes, P., Randeniya, L., Plumb, I., Grey, I., Horne, M. and Glasscock, J. (2006). Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 31(14): 1999 – 2017.

23.    Dai, P., Xie, J., Mayer, M. T., Yang, X., Zhan, J. and Wang, D. (2013). Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angewandte Chemie International Edition, 52(42): 11119 – 11123.

24.    Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A. and Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110(11): 6446 – 6473.

25.    Dai, P., Li, W., Xie, J., He, Y., Thorne, J., McMahon, G., Zhan, J. and Wang, D. (2014). Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angewandte Chemie International Edition, 53(49): 13493 – 13497.

 




Previous                    Content                    Next