Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 914 - 920
DOI:
https://doi.org/10.17576/mjas-2017-2104-18
EFFECT OF ANNEALING STRATEGY ON IMPROVED
PHOTOACTIVITY OF CUPROUS OXIDE NANOWIRE PREPARED USING FACILE FABRICATION
STRATEGY FOR SOLAR WATER SPLITTING
(Kesan Strategi Pengkalsinan Terhadap
Peningkatan Fotoaktiviti Nanowayar Kuprous Oksida Yang Disediakan Menggunakan
Cara Mudah Untuk Pembelahan Air Suria)
Mohd Nur Ikhmal Salehmin1, Lorna Jeffery
Minggu1*, Khuzaimah Arifin1, Mohammad Bin Kassim1,2
1Fuel Cell Institute
2School of Chemical Sciences and Food Technology, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: lorna_jm@ukm.edu.my
Received: 28
November 2016; Accepted: 27 April 2017
Abstract
Cu2O
photocathode such as nanowire (NW) have shown to improve photoactivity than
that nanoparticle thin film counterpart. This enhancement is attributed to
enhanced photocatalytic reaction due to increase in surface active area and
effective radial charge diffusion. However, the photoelectrochemical
performance of reported work were rather low which need an improvement prior
protection. In this study, Cu2O nanowire photocathode was fabricated
using sequential wet chemical oxidation method and annealing under inert
condition. Focusing on annealing step, the transformation of precursor Cu(OH)2
nanowire to Cu2O nanowire undergone multistep annealing with a different
ramping rate under inert condition. The highest photocurrent was then compared
with photocurrent generated from Cu2O NW prepared with direct
annealing strategy. With multistep annealing, the best photoelectrochemical
performance was obtained from Cu2O NW prepared at the highest
ramping rate which is 1.2 folds better than that obtained with single step
annealing. The photocurrent enhancement obtained in this study was attributed
to favourable morphology improving light trapping. Overall, the ampleness of
material source, non-toxic, simple fabrication and excellent photocatalytic performance are the pre-requisite to realize
solar hydrogen production.
Keywords: cuprous oxide nanowire, photocurrent,
water-splitting, hydrogen production
Abstrak
Fotokatod
Cu2O yang berstrukturkan nano wayar (NW) telah menunjukkan aktiviti
foto yang lebih baik berbanding filem nipis. Prestasi fotomangkin yang baik ini
disumbang oleh peningkatan luas permukaan yang aktif dan keberkesanan
pengaliran cas. Walaubagaimanapun, prestasi fotoelektrokimia yang telah
dilaporkan masih lagi rendah dan memerlukan penambahbaikan sebelum penyalutan
sebagai perlindungan untuk kestabilan fotokatod. Dalam kajian ini, Cu2O
NW fotokatod telah disintesis menggunakan oksidasi kimia dan pengkalsinan dalam
keadaan lengai. Pada peringkat pengkalsinan, transformasi pemula Cu(OH)2
nanowayar kepada Cu2O nanowayar telah melalui beberapa langkah
pengkalsinan dengan kadar pengkalsinan yang berbeza. Fotoarus yang tertinggi
akan dibandingkan dengan fotoarus yang terhasil daripada Cu2O
nanowayar yang disediakan menggunakan pengkalsinan terus. Pada pengkalsinan
berperingkat, prestasi fotoelektrokimia yang terbaik didapati daripada Cu2O
NW yang disediakan pada kadar pengkalsinan yang paling tinggi iaitu 1.2 kali
ganda lebih baik berbanding yang didapati daripada pengkalsinan terus. Peningkatan
fotoarus yang terhasil daripada kajian ini telah disumbangkan oleh kesan
morfologi bahan yang berkeupayaan menyerap cahaya secara efektif.
Keseluruhannya, keberadaan sumber bahan yang mencukupi, tidak toksik, cara
penyediaan yang mudah, serta prestasi fotomangkin yang bagus adalah keperluan
untuk merealisasikan penghasilan hidrogen dari tenaga suria.
Kata kunci: nanowayar kuprous oksida, fotoarus, pembelahan
air, penghasilan hidrogen
References
1.
Hacialioglu, S.,
Meng, F. and Jin, S. (2012). Facile and mild solution synthesis of Cu2O
nanowires and nanotubes driven by screw dislocations. Chemical Communications, 48(8): 1174 – 1176.
2.
De Jongh, P.,
Vanmaekelbergh, D. and Kelly, J. (1999). Cu2O: Electrodeposition and
characterization. Chemistry of Materials,
11(12): 3512 – 3517.
3.
Engel, C. J.,
Polson, T. A., Spado, J. R., Bell, J. M. and Fillinger, A. (2008).
Photoelectrochemistry of Porous P-Cu2o Films. Journal of the Electrochemical Society, 155(3): 37 – 42.
4.
Paracchino, A.,
Laporte, V., Sivula, K., Grätzel, M. and Thimsen, E. (2011). Highly active
oxide photocathode for photoelectrochemical water reduction. Nature materials, 10(6): 456 – 461.
5.
Hsu, Y.-K., Yu, C.-H.,
Chen, Y.-C. and Lin, Y.-G. (2013). Fabrication of coral-like Cu2O nanoelectrode
for solar hydrogen generation. Journal of
Power Sources, 242: 541 – 547.
6.
Hsu, Y.-K., Yu, C.-H.,
Chen, Y.-C. and Lin, Y.-G. (2013). Synthesis of novel Cu2O micro/nanostructural
photocathode for solar water splitting. Electrochimica
Acta, 105: 62 – 68.
7.
Luo, J., Steier,
L., Son, M.-K., Schreier, M., Mayer, M. T. and Grätzel, M. (2016). Cu2O
nanowire photocathodes for efficient and durable solar water splitting. Nano Letters, 16(3): 1848 – 1857.
8.
Li, C., Li, Y.
and Delaunay, J.-J. (2013). A novel method to synthesize highly photoactive Cu2O
microcrystalline films for use in photoelectrochemical cells. ACS Applied Materials & Interfaces,
6(1): 480 – 486.
9.
Zhang, Z., Dua,
R., Zhang, L., Zhu, H., Zhang, H. and Wang, P. (2013). Carbon-layer-protected
cuprous oxide nanowire arrays for efficient water reduction. ACS Nano, 7(2): 1709 – 1717.
10.
Li, Y., Zhang,
X., Chen, H. and Li, Y. (2015). Thermal conversion synthesis of Cu2O
photocathode and the promoting effects of carbon coating. Catalysis Communications, 66: 1 – 5.
11.
Dubale, A. A.,
Su, W.-N., Tamirat, A. G., Pan, C.-J., Aragaw, B. A., Chen, H.-M., Chen, C.-H.
and Hwang, B.-J. (2014). The synergetic effect of graphene on Cu2O nanowire
arrays as a highly efficient hydrogen evolution photocathode in water
splitting. Journal of Materials Chemistry
A, 2(43): 18383 –18397.
12.
Tilley, S. D.,
Schreier, M., Azevedo, J., Stefik, M. and Graetzel, M. (2014). Ruthenium oxide
hydrogen evolution catalysis on composite cuprous oxide water-splitting
photocathodes. Advanced Functional
Materials, 24(3): 303 – 311.
13.
Paracchino, A.,
Mathews, N., Hisatomi, T., Stefik, M., Tilley, S. D. and Grätzel, M. (2012).
Ultrathin films on copper(I) oxide water splitting photocathodes: A study on
performance and stability. Energy &
Environmental Science, 5(9): 8673 – 8681.
14.
Morales-Guio, C.
G., Tilley, S. D., Vrubel, H., Grätzel, M. and Hu, X. (2014). Hydrogen evolution
from a copper (i) oxide photocathode coated with an amorphous molybdenum
sulphide catalyst. Nature Communications,
5: 1 – 7.
15.
Li, C., Hisatomi,
T., Watanabe, O., Nakabayashi, M., Shibata, N., Domen, K. and Delaunay, J.-J.
(2015). Positive onset potential and stability of Cu2O-based
photocathodes in water splitting by atomic layer deposition of a Ga2O3
buffer layer. Energy & Environmental
Science, 8(5): 1493 – 1500.
16.
Lin, C.-Y., Lai, Y.-H.,
Mersch, D. and Reisner, E. (2012). Cu2O|NiOX nanocomposite
as an inexpensive photocathode in photoelectrochemical water splitting. Chemical Science, 3(12): 3482 –3487.
17.
Zhang, W., Wen,
X., Yang, S., Berta, Y. and Wang, Z. L. (2003). Single-crystalline scroll-type
nanotube arrays of copper hydroxide synthesized at room temperature. Advanced Materials, 15(10): 822 – 825.
18.
Lu, C., Qi, L.,
Yang, J., Zhang, D., Wu, N. and Ma, J. (2004). Simple template-free solution
route for the controlled synthesis of Cu(OH)2 and CuO nanostructures.
The Journal of Physical Chemistry B,
108(46): 17825 – 17831.
19.
Kargar, A.,
Partokia, S. S., Niu, M. T., Allameh, P., Yang, M., May, S., Cheung, J. S.,
Sun, K., Xu, K. and Wang, D. (2014). Solution-grown 3D Cu2O networks
for efficient solar water splitting. Nanotechnology,
25(20): 1 – 9.
20.
Kim, T. G., Oh,
H.-B., Ryu, H. and Lee, W.-J., (2014). The study of post annealing effect on Cu2O
thin-films by electrochemical deposition for photoelectrochemical applications.
Journal of Alloys and Compounds, 612:
74 – 79.
21.
Wilkinson, F.
(1986). Diffuse reflectance flash photolysis. Journal of the Chemical Society, Faraday Transactions 2: Molecular and
Chemical Physics, 82(12): 2073 – 2081.
22.
Murphy, A.,
Barnes, P., Randeniya, L., Plumb, I., Grey, I., Horne, M. and Glasscock, J.
(2006). Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy,
31(14): 1999 – 2017.
23.
Dai, P., Xie, J.,
Mayer, M. T., Yang, X., Zhan, J. and Wang, D. (2013). Solar hydrogen generation
by silicon nanowires modified with platinum nanoparticle catalysts by atomic
layer deposition. Angewandte Chemie
International Edition, 52(42): 11119 – 11123.
24.
Walter, M. G.,
Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A. and
Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110(11): 6446 – 6473.
25.
Dai, P., Li, W.,
Xie, J., He, Y., Thorne, J., McMahon, G., Zhan, J. and Wang, D. (2014). Forming
buried junctions to enhance the photovoltage generated by cuprous oxide in
aqueous solutions. Angewandte Chemie
International Edition, 53(49): 13493 – 13497.