Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 907 - 913

DOI: https://doi.org/10.17576/mjas-2017-2104-17

 

 

 

EFFECT OF RHODIUM ADDITIVE ON THE REDUCTION BEHAVIOUR OF IRON OXIDE IN CARBON MONOXIDE ATMOSPHERE

 

(Kesan Penambahan Rodium Terhadap Tindak Balas Penurunan Ferum Oksida Di Dalam Atmosfera Karbon Monoksida)

 

Tengku Shafazila Tengku Saharuddin1, Fairous Salleh2, Alinda Samsuri3, Norliza Dzakaria2, Rizafizah Othaman2, Mohammad Bin Kassim2, Mohammad Wahab Mohammad Hisham2, Mohd Ambar Yarmo2*

1Faculty of Science and Technology,

Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Centre for Defense Foundation Studies,

Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author:  ambar@ukm.edu.my

 

 

Received: 28 November 2016; Accepted: 27 April 2017

 

 

Abstract

This study was carry out to investigate the effect of 3% rhodium on the reduction behaviour of iron oxide by (10%, v/v) carbon monoxide in nitrogen as a reductant. The Rh/Fe2O3 samples were prepared by impregnation method and the reduction behavior of Rh/Fe2O3 and pure Fe2O3 were investigated by using temperature programmed reduction (TPR). The prepared samples and the reduced phases were characterized by X-ray diffraction spectroscopy (XRD). The results indicate that Rh/Fe2O3 give a better reducibility compared to Fe2O3 with a complete reduction at 650 °C, which is 250 °C lower than Fe2O3. The TPR results indicate that the reduction of Fe2O3 proceed in three steps reduction (Fe2O3 → Fe3O4 → FeO → Fe) with Fe3O4 and FeO as intermediate states while for Rh/Fe2O3 as the TPR result showed the overlapping of second and third peak (Fe3O4 → FeO and FeO → Fe) at higher temperature. Addition of Rh may possibly reduce the formation of stable FeO that stable at higher temperature by accelerates the direct reduction of Fe3O4→ Fe so the reduction process of Fe2O3 become faster. The XRD pattern shows the diffraction peaks of Rh/Fe2O3 is more intense with improved crystallinity for the characteristic peaks of Fe2O3 compared to pure Fe2O3. No visible sign of rhodium particles peaks in the XRD spectrum that indicates the Rh particles loaded onto the iron oxide are well dispersed. The well dispersed Rh onto the iron oxide and the ability to reduce the sintering effect to the iron oxide also has been confirmed by FESEM. The study shows that addition of Rh gives a better reducibility of iron oxide is also due to the ability of Rh to interact with CO as confirmed by the thermodynamic data with higher surface area compared to Fe2O3.

 

Keywords:  temperature programmed reduction, rhodium, ferum oxide, carbon monoxide

 

Abstrak

Kajian ini dijalankan untuk melihat pengaruh 3% rodium kepada kelakuan penurunan ferum oksida di mana karbon monoksida (10%, v/v) di dalam nitrogen digunakan sebagai agen penurunan. Sampel Rh/Fe2O3 disintesis menggunakan kaedah impregnasi dan kelakuan penurunan dikaji menggunakan teknik suhu penurunan berprogram (TPR). Fasa - fasa yang terbentuk dicirikan menggunakan teknik pembelauan sinar X (XRD). Keputusan menunjukkan Rh/Fe2O3 memberikan kelakuan penurunan yang lebih baik berbanding Fe2O3 sahaja dengan penurunan lengkap berlaku pada suhu 650 °C dimana suhu penurunan berkurangan sebanyak 250 °C berbanding suhu penurunan lengkap Fe2O3. Profil TPR menunjukkan bahawa penurunan ferum oksida melalui tiga langkah tindak balas penurunan (Fe2O3 → Fe3O4 → FeO → Fe) dengan Fe3O4 dan FeO merupakan fasa perantara, sementara, Rh/Fe2O3 pada suhu penurunan tinggi menunjukkan pertindihan diantara puncak kedua dan puncak ketiga (Fe3O4 → FeO and FeO → Fe). Penambahan Rh didapati mengurangkan penghasilan FeO yang stabil pada suhu tinggi dengan menggalakkan penurunan terus Fe3O4→ Fe menjadikan tindak balas penurunan lebih cepat. Difraktogram XRD bagi Rh/Fe2O3 menunjukkan peningkatan pada kehabluran puncak Fe2O3 berbanding ferum oksida tulen. Tiada puncak tambahan diperhatikan dimana ia menjelaskan bahawa zarah Rh yang dimuatkan pada ferum oksida telah tersebar dengan baik. Penyerakan yang baik oleh Rh di atas ferum oksida telah menunjukkan pengurangan kesan pensinteran terhadap ferum oksida yang telah dibuktikan melalui FESEM. Kajian menunjukkan penambahan Rh memberikan kesan yang baik kepada proses penurunan ferum oksida berdasarkan kebolehan Rh untuk berinteraksi dengan gas CO yang telah disahkan oleh pengiraan termodinamik dan peningkatan kepada luas permukaan berbanding Fe2O3 tulen.

 

Kata kunci:  suhu penurunan berprogram, rodium, ferum oksida, karbon monoksida

 

References

1.       Jozwiak, W. K., Kaczmarek, E., Maniecki, T. P., Ignaczak, T. P. and Maniukiewicz, W. (2007). Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Applied Catalysis A: General, 326(1): 17 – 27.

2.       Lorente, E., Herguido, J. and Peña, J. A. (2011). Steam-iron process: Influence of steam on the kinetics of iron oxide reduction. International Journal of Hydrogen Energy, 36(21): 13425 – 13434.

3.       Jian-Ming, P., Pei-Min, G., Pei Z., Chao-Zhen, C. and Dian-Wei, Z. (2009). Influence of size of hematite powder on its reduction kinetics by H2 at low temperature. Journal of Iron and Steel Research, International, 6(5): 7 – 11.

4.       Pineau, Kanari N. and Gaballah, I., (2007). Kinetics of reduction of iron oxides by H2. Thermochimica Acta, 456(2): 75 – 88.

5.       Kuo, Y., Hsu, W., Chiu, P., Tseng, Y. and Ku, Y. (2013). Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process. Ceramics International, 39: 5459 – 5465.

6.       Ramadan, W., Zaki, M. I., Fouad, N. E. and Mekhemer, G. H. (2014). Particle characteristics and reduction behavior of synthetic magnetite. Journal of Magnetism and Magnetic Materials, 355: 246 –253.

7.       Seak, Y., Chun, J., Hee, D. and Ho, Y. (2006). Hydrogen storage characteristics using redox of M/Fe2 O3 (M = Rh , Ce and Zr) mixed oxides. World Hydrogen Energy Conference Proceeding, 3: 2 – 8.

8.       Svoboda, K. and Baxter, D. (2007). Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures. Energy Conversion and Management, 48: 3063 – 3073.

9.       Hu, C., Gao, Z. and Yang, X. (2007). Facile synthesis of single crystalline α-Fe2O3 ellipsoidal nanoparticles and its catalytic performance for removal of carbon monoxide. Materials Chemistry and Physics,104: 429 – 433.

10.    Lorente, E., Peña, J. A. and Herguido, J. (2009). Separation and storage of hydrogen by steam-iron process: Effect of added metals upon hydrogen release and solid stability. Journal of Power Sources, 192(1): 224 – 229.

11.    Datta, P., Rihko-Struckmann, L., K. and Sundmacher, K. (2014). Quantification of produced hydrogen in a cyclic water gas shift process with mo stabilized iron oxide. Fuel Processing Technology, 128: 36 –42.

 

 




Previous                    Content                    Next