Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 901 - 906

DOI: https://doi.org/10.17576/mjas-2017-2104-16

 

 

 

EFFECT OF NICKEL ON BIMETALLIC NANOALLOY CATALYST FOR HYDROGEN GENERATION

 

(Kesan Nikel ke atas Mangkin Nanoaloi Dwilogam bagi Penghasilan Hidrogen)

 

Masitah Abdul Halim Azizi1, Norliza Dzakaria2, Wan Nor Roslam Wan Isahak1*, Mohd Ambar Yarmo2

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2School of Chemical Science and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: wannorroslam@ukm.edu.my

 

 

Received: 28 November 2016; Accepted: 27 April 2017

 

 

Abstract

A mesoporous Fe-Ni catalyst was prepared by microwave combustion method by using glycine as a fuel to help the combustion occur in the microwave. The bimetallic catalyst synthesized was intend to accelerate the production of hydrogen via decomposition of formic acid. The hydrogen produced supposedly can substitute the energy source used now especially from fossil fuels to contribute to the reduction of greenhouse effect. The catalyst sample was characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherm (BET). From the BET isotherms, a type IV isotherm was observed, indicate the presence of mesoporous solid. XRD diffractograms of Fe-Ni have well-defined diffraction patterns with strong and sharp diffraction peaks, indicating that they are crystalline. The SEM images show the presence of voids and pores in the sample and spongy structure which also consisted of very fine crystalline. The selectivity for H2 formation using the prepared bimetallic catalyst was achieved ranging of 94 to 99% for 120 minutes at optimum conversion of formic acid and merely at room temperature.

 

Keywords:  iron nickel catalyst, hydrogen energy, microwave combustion method, H2 selectivity

 

Abstrak

Mangkin Fe-Ni yang bersifat mesoporos telah disediakan dengan menggunakan kaedah pembakaran oleh gelombang mikro dengan bantuan glisin sebagai bahan bakar. Mangkin dwilogam yang disintesis bertujuan untuk mempercepatkan penghasilan hidrogen melalui penguraian asid formik. Hidrogen yang dihasilkan diharapkan dapat menggantikan sumber tenaga yang digunakan dewasa ini terutama daripada bahan api fosil supaya dapat mengurangkan kesan rumah hijau. Sampel mangkin dicirikan dengan pembelauan sinar-X (XRD), mikroskopi pengimbasan elektron (SEM), dan isoterma penyerapan-penyahjerapan N2 (BET). Daripada isoterma BET, isoterma jenis IV telah dikenalpasti, menandakan kehadiran pepejal mesoporos. Difraktogram XRD bagi Fe-Ni menunjukkan corak yang terbentuk dengan puncak yang baik dan tajam, menunjukkan mangkin tersebut merupakan hablur. Imej SEM menunjukkan kehadian ruang dan pori di dalam sampel dan berstruktur span dimana ia juga terdapat hablur yang sangat halus. Keterpilihan terhadap penghasilan gas H2 menggunakan mangkin dwilogam FeNi adalah 94 – 99% pada masa tindak balas 120 minit pada peratus penukaran asid fomik yang optimum pada suhu bilik.

 

Kata kunci:  mangkin ferum nikel, tenaga hidrogen, kaedah pembakaran gelombang mikro, kepilihan H2

 

References

1.       Jian-bin, H., Shao-wu, W., Yong, L. U. O., Zong-ci, Z. and Xin-yu, W. E. N. (2012). Debates on the causes of global warming. Advances in Climate Change Research, 3(1): 38 – 44.

2.       El Naggar, A. M. A., Awadallah, A. E. and Aboul-Enein, A. A. (2016). Novel intensified nano-structured zero-valente nickel alloy based catalyst for hydrogen production via methane catalytic decomposition. Renewable and Sustainable Energy Reviews, 53: 754 – 765.

3.       Montandon-Clerc, M., Dalebrook, A. F. and Laurenczy, G. (2015). Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts. Journal of Catalysis, 343: 62 67.

4.       Wang, Z. L., Ping, Y., Yan, J. M., Wang, H. L. and Jiang, Q. (2014). Hydrogen generation from formic acid decomposition at room temperature using a NiAuPd alloy nanocatalyst. International Journal of Hydrogen Energy, 39(10): 4850 – 4856.

5.       Jia, L., Bulushev, D. A. and Ross, J. R. H. (2014). Formic acid decomposition over palladium based catalysts doped by potassium carbonate. Catalysis Today, 259: 453 – 459.

6.       Morone, A., Apte, M. and Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51: 548 – 565.

7.       Yan, K., Jarvis, C., Gu, J. and Yan, Y. (2015). Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, 51:  986 – 997.

8.       Ramli, N. A. S. and Amin, N. A. S. (2015). Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Applied Catalysis B: Environmental, 163: 487 – 498.

9.       Zhi, Z., Li, N., Qiao, Y., Zheng, X., Wang, H. and Lu, X. (2015). Kinetic study of levulinic acid production from corn stalk at relatively high temperature using FeCl3 as catalyst : A simplified model evaluated. Industrial Crops & Products, 76: 672 – 680.

10.    Tedsree, K., Li, T., Jones, S., Chan, C. W. A., Yu, K. M. K., Bagot, P. A. J., Marquis, E. A., Smith, G. D. W. and Tsang, S. C. E. (2011). Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5): 302 – 307.

11.    Flaherty, D. W., Berglund, S. P. and Mullins, C. B. (2010). Selective decomposition of formic acid on molybdenum carbide: a new reaction pathway. Journal of Catalysis, 269(1): 33 – 43.

12.    Kooti, M. and Sedeh, A. N. (2012). Glycine-assisted fabrication of zinc and manganese ferrite nanoparticles. Scientia Iranica, 19(3): 930 – 933.

13.    Gregg, S. J. and Sing, K. S. W. (1982). Adsorption, surface area and porosity. Academic Press, New York.

14.    Feyzi, M., Mirzaei, A. A. and Bozorgzadeh, H. R. (2010). Effects of preparation and operation conditions on precipitated iron nickel catalysts for Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 19(3):  341 – 353.

15.    Mandal, K., Bhattacharjee, D. and Dasgupta, S. (2015). Synthesis of nanoporous PdAg nanoalloy for hydrogen generation from formic acid at room temperature. International Journal of Hydrogen Energy, 40(14): 4786 – 4793.

 




Previous                    Content                    Next