Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 901 - 906
DOI:
https://doi.org/10.17576/mjas-2017-2104-16
EFFECT
OF NICKEL ON BIMETALLIC NANOALLOY CATALYST FOR HYDROGEN GENERATION
(Kesan Nikel ke
atas Mangkin Nanoaloi Dwilogam bagi Penghasilan Hidrogen)
Masitah Abdul
Halim Azizi1, Norliza Dzakaria2, Wan Nor Roslam Wan
Isahak1*, Mohd Ambar Yarmo2
1Department of Chemical and Process Engineering,
Faculty of Engineering and Built Environment
2School of Chemical Science and Food Technology,
Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: wannorroslam@ukm.edu.my
Received: 28
November 2016; Accepted: 27 April 2017
Abstract
A mesoporous Fe-Ni catalyst was prepared
by microwave combustion method by using glycine as a fuel to help the
combustion occur in the microwave. The bimetallic catalyst synthesized was
intend to accelerate the production of hydrogen via decomposition of formic
acid. The hydrogen produced supposedly can substitute the energy source used
now especially from fossil fuels to contribute to the reduction of greenhouse
effect. The catalyst sample was characterized by powder X-ray diffraction
(XRD), scanning electron microscopy (SEM) and N2
adsorption-desorption isotherm (BET). From the BET isotherms, a type IV
isotherm was observed, indicate the presence of mesoporous solid. XRD
diffractograms of Fe-Ni have well-defined diffraction patterns with strong and
sharp diffraction peaks, indicating that they are crystalline. The SEM images
show the presence of voids and pores in the sample and spongy structure which
also consisted of very fine crystalline. The selectivity for H2
formation using the prepared bimetallic catalyst was achieved ranging of 94 to
99% for 120 minutes at optimum conversion of formic acid and merely at room
temperature.
Keywords: iron nickel catalyst, hydrogen energy,
microwave combustion method, H2 selectivity
Abstrak
Mangkin Fe-Ni yang bersifat mesoporos telah disediakan dengan menggunakan
kaedah pembakaran oleh gelombang mikro dengan bantuan glisin sebagai bahan
bakar. Mangkin dwilogam yang disintesis bertujuan untuk mempercepatkan
penghasilan hidrogen melalui penguraian asid formik. Hidrogen yang dihasilkan diharapkan
dapat menggantikan sumber tenaga yang digunakan dewasa ini terutama daripada
bahan api fosil supaya dapat mengurangkan kesan rumah hijau. Sampel mangkin dicirikan
dengan pembelauan sinar-X (XRD), mikroskopi pengimbasan elektron (SEM), dan
isoterma penyerapan-penyahjerapan N2 (BET). Daripada isoterma BET,
isoterma jenis IV telah dikenalpasti, menandakan kehadiran pepejal mesoporos.
Difraktogram XRD bagi Fe-Ni menunjukkan corak yang terbentuk dengan puncak yang
baik dan tajam, menunjukkan mangkin tersebut merupakan hablur. Imej SEM
menunjukkan kehadian ruang dan pori di dalam sampel dan berstruktur span dimana
ia juga terdapat hablur yang sangat halus. Keterpilihan terhadap penghasilan
gas H2 menggunakan mangkin dwilogam FeNi adalah 94 – 99% pada masa
tindak balas 120 minit pada peratus penukaran asid fomik yang optimum pada suhu
bilik.
Kata kunci: mangkin ferum nikel, tenaga hidrogen, kaedah pembakaran gelombang mikro,
kepilihan H2
References
1. Jian-bin, H., Shao-wu, W., Yong, L. U. O., Zong-ci, Z.
and Xin-yu, W. E. N. (2012). Debates on the causes of global warming. Advances
in Climate Change Research, 3(1): 38 – 44.
2. El Naggar, A. M. A., Awadallah, A. E. and Aboul-Enein,
A. A. (2016). Novel intensified nano-structured zero-valente nickel alloy based
catalyst for hydrogen production via methane catalytic decomposition. Renewable
and Sustainable Energy Reviews, 53: 754 – 765.
3. Montandon-Clerc, M., Dalebrook, A. F. and Laurenczy,
G. (2015). Quantitative aqueous phase formic acid dehydrogenation using iron(II)
based catalysts. Journal of Catalysis, 343: 62 – 67.
4. Wang, Z. L., Ping, Y., Yan, J. M., Wang, H. L. and
Jiang, Q. (2014). Hydrogen generation from formic acid decomposition at room temperature
using a NiAuPd alloy nanocatalyst. International Journal of Hydrogen Energy,
39(10): 4850 – 4856.
5. Jia, L., Bulushev, D. A. and Ross, J. R. H. (2014). Formic
acid decomposition over palladium based catalysts doped by potassium carbonate.
Catalysis Today, 259: 453 – 459.
6. Morone, A., Apte, M. and Pandey, R. A. (2015).
Levulinic acid production from renewable waste resources: bottlenecks,
potential remedies, advancements and applications. Renewable and Sustainable
Energy Reviews, 51: 548 – 565.
7. Yan, K., Jarvis, C., Gu, J. and Yan, Y. (2015). Production
and catalytic transformation of levulinic acid: A platform for speciality
chemicals and fuels. Renewable and Sustainable Energy Reviews, 51: 986 – 997.
8. Ramli, N. A. S. and Amin, N. A. S. (2015). Fe/HY zeolite
as an effective catalyst for levulinic acid production from glucose:
characterization and catalytic performance. Applied Catalysis B:
Environmental, 163: 487 – 498.
9. Zhi, Z., Li, N., Qiao, Y., Zheng, X., Wang, H. and Lu,
X. (2015). Kinetic study of levulinic acid production from corn stalk at
relatively high temperature using FeCl3 as catalyst : A simplified
model evaluated. Industrial Crops & Products, 76: 672 – 680.
10. Tedsree, K., Li, T., Jones, S., Chan, C. W. A., Yu, K.
M. K., Bagot, P. A. J., Marquis, E. A., Smith, G. D. W. and Tsang, S. C. E.
(2011). Hydrogen production from formic acid decomposition at room temperature
using a Ag-Pd core-shell nanocatalyst. Nature Nanotechnology, 6(5): 302 –
307.
11. Flaherty, D. W., Berglund, S. P. and Mullins, C. B.
(2010). Selective decomposition of formic acid on molybdenum carbide: a new
reaction pathway. Journal of Catalysis, 269(1): 33 – 43.
12. Kooti, M. and Sedeh, A. N. (2012). Glycine-assisted
fabrication of zinc and manganese ferrite nanoparticles. Scientia Iranica,
19(3): 930 – 933.
13.
Gregg, S. J. and Sing, K. S. W. (1982). Adsorption, surface
area and porosity. Academic Press, New York.
14. Feyzi, M., Mirzaei, A. A. and Bozorgzadeh, H. R.
(2010). Effects of preparation and operation conditions on precipitated iron
nickel catalysts for Fischer-Tropsch synthesis. Journal of Natural Gas
Chemistry, 19(3): 341 – 353.
15. Mandal, K., Bhattacharjee, D. and Dasgupta, S. (2015).
Synthesis of nanoporous PdAg nanoalloy for hydrogen generation from formic acid
at room temperature. International Journal of Hydrogen Energy, 40(14):
4786 – 4793.