Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 889 - 900

DOI: https://doi.org/10.17576/mjas-2017-2104-15

 

 

 

SYNTHESIS OF ZnO/rGO NANOHYBRID FOR IMPROVED PHOTOCATALYTIC ACTIVITY

 

(Sintesis Nanohibrid ZnO/rGO Untuk Mempertingkatkan Aktiviti Fotopemangkinan)

 

Marilyn Yuen Sok Wen1, Abdul Halim Abdullah1,2*, Lim Hong Ngee1

 

¹Department of Chemistry, Faculty of Science

2Materials Science and Characterization Lab., Institute of Advanced Technology

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: halim@upm.edu.my

 

 

Received: 20 September 2016; Accepted: 16 May 2017

 

 

Abstract

Nanohybrids of zinc oxide/reduced graphene oxide (ZnO/rGO) with varying graphene oxide content were prepared via precipitation and were subsequently utilised in the photodegradation of methyl orange (MO) under UV light irradiation. The prepared photocatalysts were characterized by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and Raman spectroscopy. The surface area and the band gap energy of the photocatalysts were determined by the Brunauer-Emmett-Teller method and UV-visible spectroscopic analysis. The ZnO/rGO nanohybrids produced had smaller particle sizes and lower band gap energy than that of ZnO. All the ZnO/rGO nanohybrids demonstrated better photocatalytic efficiency in the photodegradation of MO compared to ZnO. ZnO/rGO10 exhibited the highest photocatalytic activity with a rate constant that was four times higher than pure ZnO and about 40% enhancement in the photocatalytic activity for the removal of methyl orange within 3 hours. The enhanced photocatalytic performance of the ZnO/rGO photocatalysts was due to the efficient transfer of photogenerated electrons to the graphene sheet that inhibited the recombination of electron-hole pairs.

 

Keywords:  zinc oxide, reduced graphene oxide, nanohybrid, precipitation method, photocatalysis

 

Abstrak

Nanohibrid zink oksida/grafin oksida terturun (ZnO/rGO) dengan kandungan grafin oksida yang berbeza telah disediakan melalui kaedah pemendakan dan seterusnya digunakan dalam fotodegradasi metil jingga (MO) di bawah sinaran cahaya UV. Fotopemangkin yang disediakan telah dicirikan dengan menggunakan pembelauan sinar-X (XRD), mikroskopi pengimbasan elektron (FESEM), mikroskopi transmisi elekron (TEM) dan spektroskopi Raman. Luas permukaan dan tenaga jurang jalur fotomangkin telah ditentukan menggunakan kaedah Brunauer-Emmett-Teller dan analisis spektroskopi UV-sinar nampak. Nanohibrid ZnO/rGO yang terhasil mempunyai saiz zarah yang lebih kecil dan tenaga jurang jalur yang lebih rendah berbanding dengan ZnO. Nanohibrid ZnO/rGO mempamerkan kecekapan fotopemangkinan yang lebih tinggi dalam fotodegradasi MO berbanding dengan ZnO. ZnO/rGO10 mencatatkan aktiviti fotopemangkinan yang tertinggi dengan pemalar kadar empat kali ganda lebih tinggi daripada ZnO dan peningkatan 40% dalam aktiviti fotopemangkinan degradasi metil jingga dalam masa 3 jam. Peningkatan prestasi fotopemangkinan pemangkin ZnO/rGO adalah disebabkan oleh kecekapan pemindahan fotojanaan elektron ke lembaran grafin yang seterusnya menghalang penggabungan semula pasangan elektron-lubang.

 

Kata kunci:  zink oksida, grafin oksida terturun, nanohibrid, kaedah pemendakan, fotopemangkinan

 

References

1.       Zainal, Z., Hui, L. K., Hussein, M. Z., Taufiq-Yap, Y. H., Abdullah, A. H. and Ramli, I. (2005). Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamps. Journal of Hazardous Materials, 125(1): 113 - 120.

2.       Lin, W.-C., Yang, W.-D. and Jheng, S.-Y. (2012). Photocatalytic degradation of dyes in water using porous nanocrystalline titanium dioxide. Journal of the Taiwan Institute of Chemical Engineers, 43(2): 269 - 274.

3.       Chowdhury, S. and Balasubramanian, R. (2014). Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Applied Catalysis B: Environmental, 160: 307 - 324.

4.       Palanisamy, B., Babu, C., Sundaravel, B., Anandan, S. and Murugesan, V. (2013). Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol. Journal of Hazardous Materials, 252: 233 - 242.

5.       Ahmad, M., Ahmed, E., Hong, Z., Xu, J., Khalid, N., Elhissi, A. and Ahmed, W. (2013). A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Applied Surface Science, 274: 273 - 281.

6.       Shaari, N., Tan, S. and Mohamed, A. (2012). Synthesis and characterization of CNT/Ce-TiO2 nanocomposite for phenol degradation. Journal of Rare Earths, 30(7): 651 - 658.

7.       Zhu, L.-P., Liao, G.-H., Huang, W.-Y., Ma, L.-L., Yang, Y., Yu, Y. and Fu, S.-Y. (2009). Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes. Materials Science and Engineering: B, 163(3): 194 - 198.

8.       Klanwan, J., Akrapattangkul, N., Pavarajarn, V., Seto, T., Otani, Y. and Charinpanitkul, T. (2010). Single-step synthesis of MWCNT/ZnO nanocomposite using co-chemical vapor deposition method. Materials Letters, 64(1): 80 - 82.

9.       Saleh, T. A., Gondal, M., Drmosh, Q., Yamani, Z. and Al-Yamani, A. (2011). Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chemical Engineering Journal, 166(1): 407 - 412.

10.    Sakthivel, S., Geissen, S.-U., Bahnemann, D., Murugesan, V. and Vogelpohl, A. (2002). Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. Journal of Photochemistry and Photobiology A: Chemistry, 148(1): 283 - 293.

11.    Li, B., Liu, T., Wang, Y. and Wang, Z. (2012). ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 377(1): 114 - 121.

12.    Wang, Z.-I., Xu, D., Huang, Y., Wu, Z., Wang, L.-M. and Zhang, X.-B. (2012). Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chemical Communications, 48(7): 976 - 978.

13.    Liu, Y., Han, G., Li, Y. and Jin, M. (2011). Flower-like zinc oxide deposited on the film of graphene oxide and its photoluminescence. Materials Letters, 65(12): 1885 - 1888.

14.    Ameen, S., Akhtar, M. S., Seo, H.-K. and Shin, H. S. (2013). Advanced ZnO–graphene oxide nanohybrid and its photocatalytic applications. Materials Letters, 100: 261 - 265.

15.    Zhou, X., Shi, T. and Zhou, H. (2012). Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Applied Surface Science, 258(17): 6204 -6211.

16.    Leng, Y., Wang, W., Zhang, L., Zabihi, F. and Zhao, Y. (2014). Fabrication and photocatalytical enhancement of ZnO-graphene hybrid using a continuous solvothermal technique. The Journal of Supercritical Fluids, 91: 61 - 67.

17.    Xu, S., Fu, L., Pham, T. S. H., Yu, A., Han, F. and Chen, L. (2015). Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceramics International, 41(3): 4007 - 4013.

18.    Marlinda, A., Huang, N. M., Muhamad, M. R., An'amt, M., Chang, B. Y. S., Yusoff, N., Harrison, I., Lim, H. N., Chia, C. and Kumar, S.V. (2012). Highly efficient preparation of ZnO nanorods decorated reduced graphene oxide nanocomposites. Materials Letters, 80: 9 - 12.

19.    Fu, D., Han, G., Chang, Y. and Dong, J. (2012). The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Materials Chemistry and Physics, 132(2): 673 - 681.

20.    Ming, H. N. (2010). Simple room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine, 6: 3443 - 3448.

21.    Zhang, Y., Chen, Z., Liu, S. and Xu, Y.-J. (2013). Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water. Applied Catalysis B: Environmental, 140: 598 - 607.

22.    Chen, Y.-L., Hu, Z.-A., Chang, Y.-Q., Wang, H.-W., Zhang, Z.-Y., Yang, Y.-Y. and Wu, H.-Y. (2011). Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. The Journal of Physical Chemistry C, 115(5): 2563 - 2571.

23.    Moussa, H., Girot, E., Mozet, K., Alem, H., Medjahdi, G. and Schneider, R. (2016). ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Applied Catalysis B: Environmental, 185: 11 - 21.

24.    Samadi, M., Shivaee, H. A., Zanetti, M., Pourjavadi, A. and Moshfegh, A. (2012). Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. Journal of Molecular Catalysis A: Chemical, 359: 42 - 48.

25.    Kuo, S.-Y., Chen, W.-C., Lai, F.-I., Cheng, C.-P., Kuo, H.-C., Wang, S.-C. and Hsieh, W.-F. (2006). Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. Journal of Crystal Growth, 287(1): 78 - 84.

26.    Selvam, N. C. S., Narayanan, S., Kennedy, L. J. and Vijaya, J. J. (2013). Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol. Journal of Environmental Sciences, 25(10): 2157 - 2167.

27.    Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87 (9-10): 1051 - 1069.

28.    Kavitha, M., Pillai, S. C., Gopinath, P. and John, H. (2015). Hydrothermal synthesis of ZnO decorated reduced graphene oxide: Understanding the mechanism of photocatalysis. Journal of Environmental Chemical Engineering, 3:1194 - 1199.

29.    Omar, F. S., Nay Ming, H., Hafiz, S. M. and Ngee, L. H. (2014). Microwave synthesis of zinc oxide/reduced graphene oxide hybrid for adsorption-photocatalysis application. International Journal of Photoenergy, 2014: 1 - 8.

30.    Huang, K., Li, Y., Lin, S., Liang, C., Wang, H., Ye, C., Wang, Y., Zhang, R., Fan, D. and Yang, H. (2014). A facile route to reduced graphene oxide–zinc oxide nanorod composites with enhanced photocatalytic activity. Powder Technology, 257: 113 - 119.

31.    Peng, Y., Ji, J. and Chen, D. (2015). Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Applied Surface Science, 356: 762 - 768.

32.    Song, Y., Shao, P., Tian, J., Shi, W., Gao, S., Qi, J., Yan, X. and Cui, F. (2016). One-step hydrothermal synthesis of ZnO hollow nanospheres uniformly grown on graphene for enhanced photocatalytic performance. Ceramics International, 42(1): 2074 - 2078.

33.    Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G. and Sun, Z. (2011). Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction. Journal of Alloys and Compounds, 509(41): 10086 - 10091.

34.    Nipane, S., Korake, P. and Gokavi, G. (2015). Graphene-zinc oxide nanorod nanocomposite as photocatalyst for enhanced degradation of dyes under UV light irradiation. Ceramics International, 41 (3): 4549 - 4557.

35.    Yakuphanoglu, F. (2010). Electrical characterization and device characterization of ZnO microring shaped films by sol–gel method. Journal of Alloys and Compounds, 507(1): 184 - 189.

36.    Tien, H. N., Khoa, N. T., Hahn, S. H., Chung, J. S., Shin, E. W. and Hur, S. H. (2013). One-pot synthesis of a reduced graphene oxide–zinc oxide sphere composite and its use as a visible light photocatalyst. Chemical Engineering Journal, 229: 126 - 133.

37.    Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L. and Silva, A. M. (2013). Graphene oxide-P25 photocatalysts for degradation of diphenhydramine pharmaceutical and methyl orange dye. Applied Surface Science, 275: 361 - 368.

38.    Khezrianjoo, S. and Revanasiddappa, H. (2012). Langmuir-Hinshelwood kinetic expression for the photocatalytic degradation of Metanil Yellow aqueous solutions by ZnO catalyst. Chemical Sciences Journal, 3: 1 - 7.

39.    Liu, Q., Liu, Z., Zhang, X., Yang, L., Zhang, N., Pan, G., Yin, S., Chen, Y. and Wei, J. (2009). Polymer photovoltaic cells based on solutionprocessable graphene and P3HT. Advanced Functional Materials, 19(6): 894 - 904.

40.    Yang, Y. and Liu, T. (2011). Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid. Applied Surface Science, 257(21): 8950 - 8954.

41.    Herring, N. P., Almahoudi, S. H., Olson, C. R. and El-Shall, M. S. (2012). Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. Journal of Nanoparticle Research, 14(12): 1 - 13.

42.    Wang, X., Zhi, L. and Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1): 323 - 327.

43.    Gayathri, S., Jayabal, P., Kottaisamy, M. and Ramakrishnan, V. (2014). Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties. Journal of Applied Physics, 115(17): 173504.

44.    Chen, Z., Zhang, N., and Xu, Y.-J. (2013). Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm, 15(15): 3022 - 3030.

45.    Sarkar, S. and Basak, D. (2013). The reduction of graphene oxide by zinc powder to produce a zinc oxide-reduced graphene oxide hybrid and its superior photocatalytic activity. Chemical Physics Letters, 561: 125 - 130.

 

 




Previous                    Content                    Next