Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 880 - 888

DOI: https://doi.org/10.17576/mjas-2017-2104-14

 

 

 

OPTIMIZATION BY BOX-BEHNKEN DESIGN OF IN-SITU CARBON DIOXIDE CONVERSION USING LANTHANUM OXIDE

 

(Pengoptimuman Dengan Reka Bentuk Box-Behnken Untuk Penukaran in-situ Karbon Dioksida Menggunakan Lantanum Oksida)

 

Salmiah Jamal Mat Rosid, Wan Azelee Wan Abu Bakar*, Rusmidah Ali

 

Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia

 

*Corresponding author: wazelee@kimia.fs.utm.my

 

 

Received: 20 September 2016; Accepted: 16 May 2017

 

 

Lanthanum oxide based catalyst was revealed as one of potential catalyst to convert carbon dioxide to wealth product methane in simulated natural gas. To produce higher conversion of carbon dioxide, the Response Surface Methodology utilizing Box-Behnken design (BBD) was used to optimize the lanthanum oxide based catalysts by three critical parameters which were calcination temperature, based ratio and catalyst dosage. The maximum CO2 conversion was achieved at 1000 oC calcination temperature using 7 g of catalyst for 60% based loading. The optimization result from BBD is in good agreement with experimental data. The optimize parameters gave 99% of CO2 conversion determined using Fourier Transformation Infrared (FTIR) and yielded about 50% of CH4 at reaction temperature of 400 °C. X-ray Diffraction (XRD) analysis showed an amorphous structure with RuO2 as active species and Field Emission Scanning Electron Microscope (FESEM) illustrated the catalyst surface was covered with small and dispersed particles with undefined shape. EDX analysis revealed that when the calcination temperature was increased, the mass ratio of Ru increased.

 

Keywords:  Box-Behnken design, optimization, response surface methodology, lanthanum oxide

 

Abstrak

Mangkin asas lanthanum oksida adalah salah satu mangkin berpotensi menukarkan karbon dioksida kepada produk metana yang banyak dalam simulasi gas asli. Untuk menghasilkan penukaran karbon dioksida yang tinggi, kaedah gerak balas permukaan menggunakan reka bentuk Box-Behnken (BBD) untuk mengoptimumkan mangkin asas lantanum oksida oleh tiga parameter kritikal yang mana suhu kalsin, nisbah asas, dan dos mangkin. Maksimum penukaran CO2 dicapai pada suhu kalsin 1000 oC menggunakan 7 g mangkin untuk 60% nisbah asas. Keputusan pengoptimuman dari BBD adalah selari dengan data eksperimen. Parameter yang optimum memberikan 99% penukaran CO2 apabila ditentukan menggunakan Inframerah transformasi Fourier (FTIR) dan menghasilkan 50% metana pada suhu tindak balas 400 oC. Analisis pembelauan sinar-X (XRD) menunjukkan struktur amorfus dengan RuO2 sebagai aktif spesis dan Mikroskop Imbasan Elektron Pancaran Medan ( FESEM ) menunjukkan permukaan mangkin diselaputi dengan partikel yang bersaiz kecik dan terserak sekata tanpa bentuk. Analisis EDX menunjukkan apabila suhu kalsin meningkat, nisbah jisim Ru meningkat.

 

Kata kunci:  reka bentuk Box-Behnken, pengoptimuman, kaedah gerak balas permukaan, lantanum oksida

 

References

1.       Wan  Abu  Bakar, W. A.,  Othman,  M. Y.,  Ali, R.  and  Yong,  C. K.  (2008).   Nickel  oxide based supported catalysts  for  the  in-situ  reactions  of  methanation  and  desulfurization  in  the  removal  of  sour  gases from simulated natural gas. Catalysis Letters, 128: 127 – 136.

2.       Inui, T. (1996).  Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts. Catalysis Today, 29: 329 – 337.

3.       Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T., Hamakawa, S.,  Suzuki, K., Shishido, T. and Takehira, K. (1999). CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method.  Applied Catalysis A, 18: 271 – 285.

4.       Mat  Rosid,  S. J.,  Wan  Abu  Bakar, W. A.  and  Ali, R.  (2015).   Physicochemical  study of supported cobalt-lanthanum oxide based catalysts for CO2/H2 methanation reaction. Clean Technology Environmental Policy, 17: 257 – 264.

5.       Wan Azelee, W. A. B, Rusmidah, A., Abdul Aziz, A. K., Salmiah Jamal, M. R and Nurul Shefeeqa M. (2012). Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas. Journal of Fuel Chemistry and Technology, 40(7): 822 – 830.

6.       Bianchi  (2001).  TPR  and  XPS investigations of Co/Al2O3 catalysts promoted with Ru, Ir and Pt. Catalysis Letters. 76(3): 155 – 159.

7.       Montgomery D. C.  (1999).  Experimental  design  for product and process design and development. The Statis-tician, 48(2): 159 – 177.

8.       Tang, Q., Huang, X., Wu, C., Zhao, P., Chen, Y. and Yang, Y. (2009).  Structure and catalytic  properties of K-doped manganese oxide supported on alumina. Journal of Molecular Catalysis A: Chemical, 306: 48 – 53.

9.       Makinson, J. D, Lee, J. S, Magner, S. H, De Angelis, R. J, Weins, W. N. and Hieronymus, A. S. (2000). X-ray diffraction signatures of defects in nanocrystalline materials. Advances in X-ray Analysis, 42: 407 – 411.

10.    Mat  Rosid,  S. J,  Abu Bakar, W.A.W. and  Ali, R. (2013).  Methanation  reaction  over samarium oxide based catalysts. Malaysian Journal of Fundamental and Applied Sciences, 9(1): 28 – 34.

11.    Panagiotopoulou,  P.,  Kondarides,  D.  I.  and  Verykios,   X. E.  (2009).   Selective  methanation  of  CO  over supported Ru catalysts. Applied Catalysis B: Environmental, 88(3-4): 470 – 478.

12.    Kok,  E.,  Scott,  J.,  Cant,  N. and  Trimm  D.  (2011).   The  impact  of  ruthenium,  lanthanum  and activation conditions in the methanation activity of alumina-supported cobalt catalysts. Catalysis Today, 164: 297 – 301.

13.    Perego, C. and Villa, P. (1997). Catalyst preparation methods. Catalysis Today, 34 (3-4): 281 – 305.

14.    He, Z. Huang, C. Wang, Q. Jiang, Z. Chen, S. and Song S. (2011). Preparation of a praseodymium modified Ti/SnO2- Sb/PbO2 electrode and its application in the anodic degradation of the azo dye acid black 94. International Journal of Electrochemical Science, 6: 4341 – 4354.

15.    Salmiah,  J. M. R.,  Wan  Azelee,  W. A. B.  and  Rusmidah,  A. (2015). Optimization of preseodymium oxide based catalysts for methanation reaction of  simulated natural gas using box-behnken design.  Jurnal Teknologi (Science & Engineering), 75:1: 55 – 65.

16.    Londhe, V. P. and Guota, N. M. (1998).  Recent  advances I n basic and applied aspects of industrial catalysis. Studies in Surface Science and Catalysis, 113: 375 – 381.

 




Previous                    Content                    Next