Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 880 - 888
DOI:
https://doi.org/10.17576/mjas-2017-2104-14
OPTIMIZATION
BY BOX-BEHNKEN DESIGN OF IN-SITU CARBON DIOXIDE CONVERSION USING LANTHANUM
OXIDE
(Pengoptimuman
Dengan Reka Bentuk Box-Behnken Untuk Penukaran in-situ Karbon Dioksida Menggunakan Lantanum Oksida)
Salmiah Jamal
Mat Rosid, Wan Azelee Wan Abu Bakar*, Rusmidah Ali
Department
of Chemistry, Faculty of Science,
Universiti
Teknologi Malaysia, 81310 Skudai, Johor Bahru, Johor, Malaysia
*Corresponding author: wazelee@kimia.fs.utm.my
Received:
20 September 2016; Accepted: 16 May 2017
Lanthanum oxide based catalyst was revealed as
one of potential catalyst to convert carbon dioxide to wealth product methane
in simulated natural gas. To produce higher conversion of carbon dioxide, the
Response Surface Methodology utilizing Box-Behnken design (BBD) was used to
optimize the lanthanum oxide based catalysts by three critical parameters which
were calcination temperature, based ratio and catalyst dosage. The maximum CO2
conversion was achieved at 1000 oC calcination temperature using 7 g
of catalyst for 60% based loading. The optimization result from BBD is in good
agreement with experimental data. The optimize parameters gave 99% of CO2 conversion determined using
Fourier Transformation Infrared (FTIR) and yielded about 50% of CH4
at reaction temperature of 400 °C. X-ray Diffraction (XRD) analysis showed an
amorphous structure with RuO2 as active species and Field Emission
Scanning Electron Microscope (FESEM) illustrated the catalyst surface was
covered with small and dispersed particles with undefined shape. EDX analysis
revealed that when the calcination temperature was increased, the mass ratio of
Ru increased.
Keywords: Box-Behnken design, optimization, response
surface methodology, lanthanum oxide
Abstrak
Mangkin asas lanthanum oksida adalah salah satu mangkin berpotensi
menukarkan karbon dioksida kepada produk metana yang banyak dalam simulasi gas
asli. Untuk menghasilkan penukaran karbon dioksida yang tinggi, kaedah gerak
balas permukaan menggunakan reka bentuk Box-Behnken (BBD) untuk mengoptimumkan
mangkin asas lantanum oksida oleh tiga parameter kritikal yang mana suhu
kalsin, nisbah asas, dan dos mangkin. Maksimum penukaran CO2 dicapai
pada suhu kalsin 1000 oC menggunakan 7 g mangkin untuk 60% nisbah
asas. Keputusan pengoptimuman dari BBD adalah selari dengan data eksperimen.
Parameter yang optimum memberikan 99% penukaran CO2 apabila
ditentukan menggunakan Inframerah transformasi Fourier (FTIR) dan menghasilkan
50% metana pada suhu tindak balas 400 oC. Analisis
pembelauan sinar-X (XRD) menunjukkan struktur amorfus dengan RuO2
sebagai aktif spesis dan Mikroskop Imbasan Elektron Pancaran Medan ( FESEM )
menunjukkan permukaan mangkin diselaputi dengan partikel yang bersaiz
kecik dan terserak sekata tanpa bentuk. Analisis EDX menunjukkan apabila suhu
kalsin meningkat, nisbah jisim Ru meningkat.
Kata kunci: reka
bentuk Box-Behnken, pengoptimuman, kaedah gerak balas permukaan, lantanum
oksida
References
1. Wan Abu Bakar, W. A., Othman, M. Y., Ali,
R. and Yong, C.
K. (2008). Nickel oxide based supported catalysts for the
in-situ reactions of methanation
and desulfurization in the removal of sour
gases from simulated natural gas.
Catalysis Letters, 128: 127 – 136.
2. Inui, T. (1996). Highly effective conversion of carbon dioxide
to valuable compounds on composite catalysts. Catalysis Today, 29: 329 – 337.
3. Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T.,
Hamakawa, S., Suzuki, K., Shishido, T.
and Takehira, K. (1999). CO2 reforming of CH4 over
Ni/perovskite catalysts prepared by solid phase crystallization method. Applied
Catalysis A, 18: 271 – 285.
4. Mat Rosid, S. J., Wan
Abu Bakar, W. A. and Ali,
R. (2015). Physicochemical study of supported cobalt-lanthanum oxide
based catalysts for CO2/H2 methanation reaction. Clean Technology Environmental Policy,
17: 257 – 264.
5. Wan Azelee, W. A. B, Rusmidah, A., Abdul Aziz, A. K.,
Salmiah Jamal, M. R and Nurul Shefeeqa M. (2012). Catalytic methanation
reaction over alumina supported cobalt oxide doped noble metal oxides for the
purification of simulated natural gas. Journal
of Fuel Chemistry and Technology, 40(7): 822 – 830.
6. Bianchi (2001). TPR and XPS investigations of Co/Al2O3 catalysts promoted with Ru, Ir and Pt. Catalysis Letters. 76(3):
155 – 159.
7. Montgomery D. C.
(1999). Experimental design for
product and process design and development. The
Statis-tician, 48(2): 159 – 177.
8. Tang, Q., Huang, X., Wu, C., Zhao, P., Chen, Y. and
Yang, Y. (2009). Structure and catalytic
properties of K-doped manganese oxide
supported on alumina. Journal of Molecular Catalysis A: Chemical, 306: 48
– 53.
9. Makinson, J. D, Lee, J. S, Magner, S. H, De Angelis,
R. J, Weins, W. N. and Hieronymus, A. S. (2000). X-ray diffraction signatures
of defects in nanocrystalline materials. Advances
in X-ray Analysis, 42: 407 – 411.
10. Mat Rosid, S. J, Abu
Bakar, W.A.W. and Ali, R. (2013). Methanation reaction over samarium oxide based catalysts. Malaysian Journal of Fundamental and Applied
Sciences, 9(1): 28 – 34.
11. Panagiotopoulou,
P., Kondarides, D. I. and Verykios,
X.
E. (2009). Selective methanation of CO over supported Ru catalysts. Applied Catalysis B: Environmental, 88(3-4):
470 – 478.
12. Kok,
E., Scott, J.,
Cant, N. and Trimm
D. (2011). The impact of
ruthenium, lanthanum and activation conditions in the methanation
activity of alumina-supported cobalt catalysts. Catalysis
Today, 164: 297 – 301.
13. Perego, C. and Villa, P. (1997). Catalyst preparation methods. Catalysis
Today, 34 (3-4): 281 – 305.
14. He, Z. Huang, C.
Wang, Q. Jiang, Z. Chen, S. and Song S. (2011). Preparation of a praseodymium
modified Ti/SnO2- Sb/PbO2 electrode and its application
in the anodic degradation of the azo dye acid black 94. International Journal of Electrochemical Science, 6: 4341 – 4354.
15. Salmiah, J. M. R., Wan Azelee,
W. A. B. and Rusmidah,
A. (2015). Optimization of preseodymium
oxide based catalysts for methanation reaction of simulated natural gas using box-behnken
design. Jurnal Teknologi (Science & Engineering), 75:1: 55 – 65.
16. Londhe, V. P.
and Guota, N. M. (1998). Recent advances I n basic and applied aspects of
industrial catalysis. Studies in Surface
Science and Catalysis, 113: 375 – 381.