Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 849 - 859

DOI: https://doi.org/10.17576/mjas-2017-2104-11

 

 

 

GAS PHASE GLYCEROL DEHYDRATION TO ACROLEIN USING SUPPORTED SILICOTUNGSTIC ACID CATALYST

 

(Penyahhidratan Gliserol Fasa Gas Kepada Akrolein Menggunakan Sokongan Mangkin Asid Silikotungstik)

 

Amin Talebian-Kiakalaieh and Nor Aishah Saidina Amin*

 

Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering,

Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

*Corresponding author: noraishah@cheme.utm.my

 

 

Received: 20 September 2016; Accepted: 16 May 2017

 

 

Abstract

The gas phase dehydration of glycerol to acrolein over a series of supported silicotungstic acid (HSiW) on γ-Al2O3 nanoparticle (W10-Al, W20-Al, W30-Al and W40-Al) has been investigated. The catalysts were characterized by temperature programmed desorption, nitrogen adsorption–desorption, thermogravimetric analysis, X-ray diffraction, field-emission scanning electron microscopy and energy dispersive X-ray techniques. The large pore diameters (>21 nm) of the prepared catalysts alleviated the coke deposition effect. The acidity of the samples increased from 2 to 2.6 mmol/g.cat by varying HSiW loadings from 10 to 40 wt.% on γ-Al2O3 nanoparticle. The highest acrolein yield achieved was 74.1% at 94% glycerol conversion over W20-Al catalyst for 10 wt% glycerol feed concentration and 300 ˚C reaction temperature in 3 hours. The combined physicochemical characteristics of W20-Al made it more superior compared with other samples in the current study.

 

Keywords:  acrolein, dehydration, glycerol, supported silicotungstic acid

 

Abstrak

Penyahhidratan gliserol fasa gas kepada akrolein dengan menggunakan satu siri asid silikotungstik disokong (HSiW) terhadapnanopartikel γ-Al2O3 (W10-Al, W20-Al, W30-Al, dan W40-Al) telah dikaji.  Mangkin-mangkin tersebut dicirikan oleh penyahjerapan suhu terprogram, penjerapan-penyahjerapan nitrogen, analisis termogravimetrik, pembelauan sinar X, mikroskop pengimbasan elektron pancaran medan, dan teknik penyerakan tenaga sinar X. Diameter liang besar (>21 nm) bagi mangkin yang disediakan dapat mengurangkan kesan pemendapan kok. Keasidan sampel meningkat daripada 2 hingga 2.6 mmol/g.cat dengan mengubah beban HSiW daripada 10 hingga 40 wt.% pada nanopartikel γ-Al2O3. Hasil akrolein tertinggi yang dicapai adalah 74.1% pada 94% penukaran gliserol terhadap mangkin W20-Al bagi 10 wt.% kepekatan suapan gliserol dan 300 °C suhu tindak balas dalam masa 3 jam. Ciri-ciri gabungan fizikokimia W20-Al menjadikannya lebih unggul berbanding sampel lain dalam kajian semasa.

 

Kata kunci:  akrolein, penyahhidratan, gliserol, asid silikotungstik disokong

 

References

1.       Liu, L., Ye, X. P. and Bozell, J. J. (2012).  A comparative  review  of  petroleum-based and bio-based acrolein production. ChemSusChem, 5(7): 1162 – 1180.

2.       Talebian-Kiakalaieh, A., Amin, N. A. S. and Hezaveh, H. (2014).  Glycerol for renewable  acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, 40: 28 – 59.

3.       Tan, H.W., Aziz, A. R. A. and Aroua, M. K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews. 27: 118 – 127.

4.       Yadav, G. D., Chandan, P. A. and Gopalaswami, N. (2012).  Green etherification of bioglycerol with 1-phenyl ethanol over supported heteropolyacid. Clean Technologies and Environmental Policy, 14(1): 85 – 95.

5.       Garcia,  J.  I.,  Garcia-Marin,  H.  and  Pires,  E.  (2014).  Glycerol  based  solvents:  synthesis,  properties  and applications. Green Chemistry, 16: 1007 – 1033.

6.       Thomas, J. M. (2014).  Heterogeneous  catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks. ChemSusChem, 7(7): 1801 – 1832.

7.       Katryniok, B., Paul, S., Capron, M., Belliere-Baca, V., Rey, P. and Dumeignil, F. (2012). Regeneration of silica-supported silicotungstic acid as a catalyst for the dehydration of glycerol. ChemSusChem, 5 (5): 1298 – 1306.

8.       Kang, T. H., Choi, J. H., Bang, Y., Yoo, J., Song, J. H., Joe, W., Choi, J. S. and Song. I. K. (2015). Dehydration of  glycerin  to  acrolein   over  H3PW12O40  heteropolyacid  catalyst supported on silica-alumina.  Journal  of  Molecular Catalysis A: Chemistry, 396: 282 – 289.

9.       Ma,  T.,  Yun,  Z.,  Xu, W.,  Chen, L.,  Li,  L.,  Ding, J. and  Shao. R. (2016).  Pd-H3PW12O40/Zr-MCM-41: An efficient  catalyst  for  the sustainable dehydration of glycerol to acrolein. Chemical Engineering Journal, 294: 343 – 352.

10.    Costa, B. O. D., Peralta, M. A. and Querini, C. A. (2014). Gas phase dehydration of glycerol over, lanthanum-modified beta-zeolite. Applied Catalysis A: General, 472: 53 – 63.

11.    Park,  H.,  Yun, Y.  S.,  Kim, T. Y.,  Lee, K. R.,  Baek, J. and  Yi. J.  (2015).  Kinetics  of  the  dehydration  of  glycerol over acid  catalysts  with  an  investigation  of  deactivation mechanism by coke. Applied Catalysis B: Environment, 176: 1 – 10.

12.    Estevez, R., Lopez-Pedrajas, S., Blanco-Bonilla, F., Luna, D. and Bautista, F. M. (2015). Production of acrolein from glycerol in liquid phase on heterogeneous catalysts. Chemical Engineering Journal, 282: 179 – 186.

13.    Garcia-Sancho, J. A. C. C., Merida-Robles, J. M. M., Gonzalez, J. S., Moreno-Tost, R. and Maireles-Torres, P. (2016).  WO3  supported on Zr doped mesoporous SBA-15 silica for glycerol dehydration to acrolein. Applied Catalysis A: General, 516: 30 – 40.

14.    Feng, X., Yao, Y., Su, Q., Zhao, L., Jiang, W., Ji, W. and Au. C. (2015). Vanadium pyrophosphate oxides: The role of preparation chemistry in determining renewable acrolein production from glycerol dehydration. Applied Catalysis B: Environment, 164: 31 – 39.

15.    Tao, L. Z.,  Chai, L. H.,  Zuo, Y.,  Zheng, W. T.,  Liang, Y. and  Xu, B. Q. (2010).  Sustainable  production  of acrolein: Acidic binary metal oxide catalysts for gas-phase dehydration of glycerol. Catalysis Today, 158: 310 – 316.

16.    Atia, H.,  Armbruster, H. and  Martin, A.  (2008).  Dehydration  of  glycerol in gas phase using heteropolyacid catalysts as active compounds. Journal of Catalysis, 258: 71 – 82.

17.    Stosic,  D,  Bennici,  S.,  Sirotin,  S.,  Calais,  C.,  Couturier,  J.  L.,  Dubois,  J.  L.,  Travert,   A.,  Auroux,  A.  (2012).   Glycerol  dehydration   over   calcium   phosphate   catalysts:    Effect   of  acidic–basic  features   on  catalytic performance. Applied Catalysis A: General, 447: 124 – 134.

18.    Gu, Y., Cui, N., Yu, Q., Li, C. and Cui, Q. (2012). Study on the influence of channel structure properties in the dehydration of glycerol to acrolein over H-zeolite catalysts. Applied Catalysis A: General, 429: 9 – 16.

19.    Alhanash,  A.,  Kozhevnikova,  E. F.  and  Kozhevnikov,  I. V.  (2010).   Gas-phase  dehydration of glycerol to acrolein catalysed by caesiumheteropoly salt. Applied Catalysis A: General, 378: 11 – 18.

20.    Haider, M. H., Dummer, N. F., Zhang, D., Miedziak, P., Davies, T. E., Taylor, S. H., Willock, D. J., Knight, D. W., Chadwick, D. and  Hutchings,  G. H.  (2012).  Rubidium- and  caesium-doped  silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis, 286: 206 – 213.

21.    Yun, D., Kim, T. Y., Park, D. S., Yun, Y. S., Han, J. W. and Yi, J. (2014). A tailored catalyst for the sustainable conversion of glycerol to acrolein: Mechanistic aspect of sequential dehydration. ChemSusChem, 7(8): 2193 – 2201.

22.    Atia,  H.,  Armbruster,  U. and  Martin,  A.  (2011).   Influence  of  alkaline metal on performance of supported silicotungstic acid catalysts in glycerol dehydration towards acrolein. Applied Catalysis A. General, 393: 331 – 339.

23.    Said, A. E. A., El-Wahab, M. M. M. A. and Alian. A. M. (2007).  Catalytic performance of Brønsted acid sites during esterification of acetic acid with ethyl alcohol over phosphotungestic acid supported on silica. Journal of Chemical Technology and Biotechnology, 82: 513 – 523.

24.    Katryniok, B.,  Paul, S.,  Capron, M.,  Lancelot, C.,  Bellere-Beca, V., Rey, P. and  Dumeignil, F. A.  (2010). A long-life catalyst for glycerol dehydration to acrolein. Green Chemistry, 12: 1922 – 1925.

25.    Badday, A. S., Abdullah, A. Z. and Lee, K. (2013). Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst. Applied Energy, 105: 380 – 388.

26.    Hernández-Cortez,  J. G.,  Martinez,  L., Soto, L., López, A., Navarrete, J. and  Manríquez, M.  (2010). Liquid phase  alkylation  of  benzene  with dec-1-ene  catalyzed  on  supported  12-tungstophosphoric acid.  Catalysis Today, 150: 346 – 352.

27.    Shringarpure,  P. A. and  Patel,  A.  (2011).   Supported undecatungstophosphate:   An  efficient  recyclable  bi-functional catalyst for esterification of alcohols as well as selective oxidation of styrene. Chemical Engineering Journal, 173: 612 – 619.

28.    Hondnett,  B. H. and  Moffat,  J. B.  (1984). Application of temperature-programmed desorption to the study of heteropoly compounds: Desorption of water and pyridine. Journal of Catalysis, 88: 253 – 263.

29.    Pizzio, L. R. and  Blanco,  M. N.  (2007).  A  contribution  to  the  physicochemical characterization of nonstoi-chiometric salts of tungstosilicic acid. Microporous Mesoporous Materials, 103: 40 – 47.

30.    Zhu, S., Gao, X., Zhu, Y., Zhu, Y., Xiang, X., Hu, C. and Li, Y. (2013). Alkaline metals modified Pt–H4SiW12O40/ZrO2  catalysts  for  the  selective  hydrogenolysis  of  glycerol to  1,3-propanediol.   Applied Catalysis  B: Environment, 140: 60 – 67.

31.    Zhu, S.,  Zhu, Y., Hao, S., Zheng, H., Mo, T. and Li, Y. (2012).  One-step  hydrogenolysis  of  glycerol  to bio-propanols over Pt–H4SiW12O40/ZrO2 catalysts. Green Chemistry, 14: 2607 – 2616.

32.    Yadav, G. D. and Tekale,  D. P.  (2014).    Selective  mono-isopropylation   of  ,3-propanediol  with  isopropyl alcohol using heteropoly acid supported on K-10 clay catalyst. Catalysis Today, 237: 54 – 61.

33.    Talebian-Kiakalaieh, A., Amin, N. A. S. and Zaki, Y. Z.  (2016).  Gas phase  selective conversion of glycerol to acrolein over supported silicotungstic acid catalyst. Journal of Industrial Chemical Engineering, 34: 300 – 312. 

34.    Kozhevnikov, I. V.  (1998).   Catalysis  by  heteropoly  acids  and  multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews, 98: 171 – 198.

35.    Tsukuda, E., Sato, S., Takahashi, R. and Sodesawa, T. (2007). Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Communication, 8(9): 1349 – 1353.

 




Previous                    Content                    Next