Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 849 - 859
DOI:
https://doi.org/10.17576/mjas-2017-2104-11
GAS
PHASE GLYCEROL DEHYDRATION TO ACROLEIN USING SUPPORTED SILICOTUNGSTIC ACID
CATALYST
(Penyahhidratan
Gliserol Fasa Gas Kepada Akrolein Menggunakan Sokongan Mangkin Asid
Silikotungstik)
Amin
Talebian-Kiakalaieh and Nor Aishah Saidina Amin*
Chemical
Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering,
Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
*Corresponding author: noraishah@cheme.utm.my
Received: 20
September 2016; Accepted: 16 May 2017
Abstract
The gas phase dehydration of glycerol to
acrolein over a series of supported silicotungstic acid (HSiW) on γ-Al2O3
nanoparticle (W10-Al, W20-Al, W30-Al and W40-Al)
has been investigated. The catalysts were characterized by temperature
programmed desorption, nitrogen adsorption–desorption, thermogravimetric
analysis, X-ray diffraction, field-emission scanning electron microscopy and
energy dispersive X-ray techniques. The large pore diameters (>21 nm) of the
prepared catalysts alleviated the coke deposition effect. The acidity of the
samples increased from 2 to 2.6 mmol/g.cat by varying HSiW loadings from 10 to
40 wt.% on γ-Al2O3 nanoparticle. The highest acrolein
yield achieved was 74.1% at 94% glycerol conversion over W20-Al
catalyst for 10 wt% glycerol feed concentration and 300 ˚C reaction temperature
in 3 hours. The combined physicochemical characteristics of W20-Al
made it more superior compared with other samples in the current study.
Keywords: acrolein, dehydration, glycerol, supported
silicotungstic acid
Abstrak
Penyahhidratan
gliserol fasa gas kepada akrolein dengan menggunakan satu siri asid
silikotungstik disokong (HSiW) terhadapnanopartikel γ-Al2O3
(W10-Al, W20-Al, W30-Al, dan W40-Al)
telah dikaji. Mangkin-mangkin tersebut
dicirikan oleh penyahjerapan suhu terprogram, penjerapan-penyahjerapan
nitrogen, analisis termogravimetrik, pembelauan sinar X, mikroskop pengimbasan
elektron pancaran medan, dan teknik penyerakan tenaga sinar X. Diameter liang
besar (>21 nm) bagi mangkin yang disediakan dapat mengurangkan kesan
pemendapan kok. Keasidan sampel meningkat daripada 2 hingga 2.6 mmol/g.cat
dengan mengubah beban HSiW daripada 10 hingga 40 wt.% pada nanopartikel γ-Al2O3.
Hasil akrolein tertinggi yang dicapai adalah 74.1% pada 94% penukaran
gliserol terhadap mangkin W20-Al bagi 10 wt.% kepekatan suapan
gliserol dan 300 °C suhu tindak balas dalam masa 3 jam. Ciri-ciri gabungan
fizikokimia W20-Al menjadikannya lebih unggul berbanding sampel lain
dalam kajian semasa.
Kata kunci: akrolein, penyahhidratan,
gliserol, asid silikotungstik disokong
References
1.
Liu,
L., Ye, X. P. and Bozell, J. J. (2012). A
comparative review of petroleum-based and bio-based acrolein
production. ChemSusChem, 5(7): 1162 –
1180.
2.
Talebian-Kiakalaieh,
A., Amin, N. A. S. and Hezaveh, H. (2014). Glycerol for renewable acrolein production by catalytic dehydration. Renewable
and Sustainable Energy Reviews, 40: 28 – 59.
3.
Tan,
H.W., Aziz, A. R. A. and Aroua, M. K. (2013). Glycerol production and its
applications as a raw material: A review. Renewable and Sustainable Energy
Reviews. 27: 118 – 127.
4.
Yadav,
G. D., Chandan, P. A. and Gopalaswami, N. (2012). Green etherification of bioglycerol with 1-phenyl
ethanol over supported heteropolyacid. Clean Technologies and Environmental
Policy, 14(1): 85 – 95.
5.
Garcia, J. I., Garcia-Marin, H. and Pires, E.
(2014). Glycerol based solvents:
synthesis, properties and applications. Green Chemistry, 16:
1007 – 1033.
6.
Thomas,
J. M. (2014). Heterogeneous catalysis and the challenges of powering the
planet, securing chemicals for civilised life, and clean efficient utilization
of renewable feedstocks. ChemSusChem, 7(7): 1801 – 1832.
7.
Katryniok,
B., Paul, S., Capron, M., Belliere-Baca, V., Rey, P. and Dumeignil, F. (2012). Regeneration
of silica-supported silicotungstic acid as a catalyst for the dehydration of
glycerol. ChemSusChem, 5 (5): 1298 – 1306.
8.
Kang,
T. H., Choi, J. H., Bang, Y., Yoo, J., Song, J. H., Joe, W., Choi, J. S. and Song.
I. K. (2015). Dehydration of glycerin to acrolein over H3PW12O40 heteropolyacid catalyst supported on silica-alumina. Journal of Molecular
Catalysis A: Chemistry, 396: 282 – 289.
9.
Ma,
T., Yun, Z.,
Xu, W., Chen, L., Li, L.,
Ding, J. and Shao. R. (2016). Pd-H3PW12O40/Zr-MCM-41:
An efficient catalyst for the
sustainable dehydration of glycerol to acrolein. Chemical Engineering
Journal, 294: 343 – 352.
10.
Costa,
B. O. D., Peralta, M. A. and Querini, C. A. (2014). Gas phase dehydration of
glycerol over, lanthanum-modified beta-zeolite. Applied Catalysis A: General,
472: 53 – 63.
11.
Park,
H., Yun, Y. S., Kim,
T. Y., Lee, K. R., Baek, J. and Yi. J. (2015).
Kinetics of the dehydration of glycerol over acid catalysts with an
investigation of deactivation mechanism by coke. Applied
Catalysis B: Environment, 176: 1 – 10.
12.
Estevez,
R., Lopez-Pedrajas, S., Blanco-Bonilla, F., Luna, D. and Bautista, F. M.
(2015). Production of acrolein from glycerol in liquid phase on heterogeneous
catalysts. Chemical Engineering Journal, 282: 179 – 186.
13.
Garcia-Sancho,
J. A. C. C., Merida-Robles, J. M. M., Gonzalez, J. S., Moreno-Tost, R. and
Maireles-Torres, P. (2016). WO3 supported on Zr doped mesoporous SBA-15 silica
for glycerol dehydration to acrolein. Applied Catalysis A: General, 516:
30 – 40.
14.
Feng,
X., Yao, Y., Su, Q., Zhao, L., Jiang, W., Ji, W. and Au. C. (2015). Vanadium
pyrophosphate oxides: The role of preparation chemistry in determining
renewable acrolein production from glycerol dehydration. Applied Catalysis
B: Environment, 164: 31 – 39.
15.
Tao,
L. Z., Chai, L. H., Zuo, Y., Zheng, W. T., Liang, Y. and Xu, B. Q. (2010). Sustainable production of acrolein: Acidic binary metal oxide
catalysts for gas-phase dehydration of glycerol. Catalysis Today, 158:
310 – 316.
16.
Atia,
H., Armbruster, H. and Martin, A. (2008). Dehydration of glycerol
in gas phase using heteropolyacid catalysts as active compounds. Journal of
Catalysis, 258: 71 – 82.
17.
Stosic, D, Bennici,
S., Sirotin, S., Calais,
C., Couturier, J. L., Dubois, J. L., Travert, A., Auroux, A. (2012).
Glycerol dehydration over calcium
phosphate
catalysts: Effect of acidic–basic
features on catalytic performance. Applied Catalysis A:
General, 447: 124 – 134.
18.
Gu,
Y., Cui, N., Yu, Q., Li, C. and Cui, Q. (2012). Study on the influence of
channel structure properties in the dehydration of glycerol to acrolein over
H-zeolite catalysts. Applied Catalysis A: General, 429: 9 – 16.
19.
Alhanash,
A., Kozhevnikova, E. F. and
Kozhevnikov, I. V. (2010). Gas-phase dehydration of glycerol to acrolein catalysed
by caesiumheteropoly salt. Applied Catalysis A: General, 378: 11 – 18.
20.
Haider,
M. H., Dummer, N. F., Zhang, D., Miedziak, P., Davies, T. E., Taylor, S. H., Willock,
D. J., Knight, D. W., Chadwick, D. and Hutchings,
G. H. (2012). Rubidium- and caesium-doped silicotungstic acid catalysts supported on
alumina for the catalytic dehydration of glycerol to acrolein. Journal of
Catalysis, 286: 206 – 213.
21.
Yun,
D., Kim, T. Y., Park, D. S., Yun, Y. S., Han, J. W. and Yi, J. (2014). A tailored
catalyst for the sustainable conversion of glycerol to acrolein: Mechanistic
aspect of sequential dehydration. ChemSusChem, 7(8): 2193 – 2201.
22.
Atia,
H., Armbruster, U. and Martin,
A. (2011).
Influence of alkaline
metal on performance of supported silicotungstic acid catalysts in glycerol
dehydration towards acrolein. Applied Catalysis A. General, 393: 331 – 339.
23.
Said,
A. E. A., El-Wahab, M. M. M. A. and Alian. A. M. (2007). Catalytic performance of Brønsted acid sites
during esterification of acetic acid with ethyl alcohol over phosphotungestic
acid supported on silica. Journal of Chemical Technology and Biotechnology,
82: 513 – 523.
24.
Katryniok,
B., Paul, S., Capron, M., Lancelot, C., Bellere-Beca, V., Rey, P. and Dumeignil, F. A. (2010). A long-life catalyst for glycerol
dehydration to acrolein. Green Chemistry, 12: 1922 – 1925.
25.
Badday,
A. S., Abdullah, A. Z. and Lee, K. (2013). Ultrasound-assisted
transesterification of crude Jatropha oil using alumina-supported
heteropolyacid catalyst. Applied Energy, 105: 380 – 388.
26.
Hernández-Cortez, J. G., Martinez,
L., Soto, L., López, A., Navarrete, J.
and Manríquez, M. (2010). Liquid phase alkylation of benzene
with dec-1-ene catalyzed on supported 12-tungstophosphoric acid. Catalysis Today, 150: 346 – 352.
27.
Shringarpure,
P. A. and Patel, A.
(2011). Supported undecatungstophosphate: An efficient recyclable bi-functional catalyst for esterification of
alcohols as well as selective oxidation of styrene. Chemical Engineering Journal,
173: 612 – 619.
28.
Hondnett,
B. H. and Moffat, J. B. (1984). Application of temperature-programmed
desorption to the study of heteropoly compounds: Desorption of water and
pyridine. Journal of Catalysis, 88: 253 – 263.
29.
Pizzio,
L. R. and Blanco, M. N. (2007).
A contribution to the physicochemical characterization of nonstoi-chiometric
salts of tungstosilicic acid. Microporous Mesoporous Materials, 103: 40
– 47.
30.
Zhu,
S., Gao, X., Zhu, Y., Zhu, Y., Xiang, X., Hu, C. and Li, Y. (2013). Alkaline
metals modified Pt–H4SiW12O40/ZrO2 catalysts for the
selective hydrogenolysis of glycerol
to 1,3-propanediol. Applied Catalysis B: Environment, 140: 60 – 67.
31.
Zhu,
S., Zhu, Y., Hao, S., Zheng, H., Mo, T.
and Li, Y. (2012). One-step hydrogenolysis of glycerol to bio-propanols over Pt–H4SiW12O40/ZrO2
catalysts. Green Chemistry, 14: 2607 – 2616.
32.
Yadav,
G. D. and Tekale, D. P. (2014). Selective mono-isopropylation of ,3-propanediol with isopropyl
alcohol using heteropoly acid supported on K-10 clay catalyst. Catalysis Today,
237: 54 – 61.
33.
Talebian-Kiakalaieh,
A., Amin, N. A. S. and Zaki, Y. Z. (2016).
Gas phase selective conversion of glycerol to acrolein
over supported silicotungstic acid catalyst. Journal of Industrial Chemical
Engineering, 34: 300 – 312.
34.
Kozhevnikov,
I. V. (1998). Catalysis by heteropoly acids and
multicomponent polyoxometalates in
liquid-phase reactions. Chemical Reviews, 98: 171 – 198.
35.
Tsukuda,
E., Sato, S., Takahashi, R. and Sodesawa, T. (2007). Production of acrolein
from glycerol over silica-supported heteropoly acids. Catalysis
Communication, 8(9): 1349 – 1353.