Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 860 - 870

DOI: https://doi.org/10.17576/mjas-2017-2104-12

 

 

 

SYNTHESIS OF MESOPOROUS SODALITE BY MIXED QUATERNARY AMMONIUM CATION TEMPLATES FOR KNOEVENAGEL CONDENSATION REACTION

 

(Sintesis Sodalit Mesoliang dengan Campuran Templat-Templat Kation Amonium Kuaterner untuk Tindak Balas Kondensasi Knoevenagel)

 

Mohamad Faiz Othman, Shima Shirani Lapari, Zainab Ramli*, Sugeng Triwahyono

 

Department of Chemistry, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  zainabr@utm.my

 

 

Received: 20 September 2016; Accepted: 16 May 2017

 

 

Abstract

Sodalite (SOD) is a microporous zeolite with pore size about 2.8 Å which limits its role as catalyst for the reaction involving bulky molecules. To overcome this disadvantage, mesotemplate can be added to create mesoporosity in the synthesis of SOD. A series of SOD samples was synthesized using dual templates approach by mixing tetrapropylammonium hydroxide (TPAOH) with different quaternary ammonium cations. The samples were characterized using X-ray Diffraction (XRD), Fourier Transformation Infrared (FTIR) and N2 adsorption analysis. From N2 adsorption analysis, only SOD sample prepared by mixing TPAOH with organosilane (SOD-TO) showed the characteristic of mesoporosity with a narrow pore size distribution peak centered at ca. 66 Å. The basicity properties of all SOD samples were evaluated by Hammett indicators test and back titration method. While, the basicity property of SOD-TO was compared with the microporous SOD (Na-SOD) using TPD-CO2 analysis. All SOD samples were tested in the Knoevenagel condensation reaction of benzaldehyde and diethyl malonate, giving diethyl-2-benzylidenemalonate as the main product. The results showed that SOD-TO catalyst which possessing the highest amount of basicity and the highest surface area with mesoporosity character gave the highest percentages of conversion and yield of Knoevenagel reaction.

 

Keywords:    sodalite, basic catalyst, dual templates approach, mesoporous sodalite, Knoevenagel condensation reaction

 

Abstrak

Sodalit (SOD) ialah zeolit mikroliang dengan liang bersaiz sekitar 2.8 Å yang menghadkan peranannya sebagai mangkin untuk tindak balas yang melibatkan molekul – molekul yang besar. Untuk mengatasi kekangan ini, mesotemplat boleh ditambahkan dalam sintesis SOD bagi mengwujudkan mesoliang dalam SOD. Satu siri SOD telah disintesis menggunakan pendekatan dwi templat dengan campuran tetrapropilamonium hidroksida (TPA) dengan pelbagai kation amonium kuaterner. Semua sampel telah dicirikan menggunakan pembelauan sinar-X (XRD), Inframerah Tranformasi Fourier (FTIR) dan analisis penjerapan N2. Daripada analisis penjerapan N2, sampel SOD yang disintesis hasil campuran TPA dengan organosilana (SOD-TO) sahaja yang menunjukkan ciri-ciri mesoliang dengan puncak penyebaran sempit saiz liang berpusat di ca. 66 Å. Ciri-ciri kebesan untuk semua sampel SOD telah dinilai menggunakan ujian petunjuk Hammett dan kaedah titratan berbalik. Manakala, ciri-ciri kebesan SOD-TO telah dibandingkan dengan SOD mikroliang (Na-SOD) menggunakan analisis TPD-CO2. Semua sampel SOD telah diuji dalam tindak balas kondensasi Knoevenagel antara benzaldehid dan dietil malonat yang menghasilkan dietil-2-benzilidenemalonat sebagai hasil utama. Keputusan menunjukkan mangkin SOD-TO yang mempunyai jumlah kebesan dan luas permukaan yang paling tinggi dengan kehadiran ciri mesoliang dalam strukturnya memberikan peratusan penukaran dan hasil yang paling tinggi bagi tindak balas Knoevenagel.

 

Kata kunci:      sodalit, mangkin bes, pendekatan dwi templat, sodalit mesoliang dan tindak balas kondensasi Knoevenagel

 

References

1.       Weckhuysen, B. M. and Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44 (20): 7022 – 7024.

2.       Arya, K. and Tomar, R. (2015). Microporous zeolite catalyst system: An eco-approach for regioselective synthesis of pyrimidobenzimidazoles. Research on Chemical Intermediates, 41(6): 3389 – 3400.

3.       Zhao, J., Wang, G., Qin, L., Li, H., Chen, Y. and Liu, B. (2016). Synthesis and catalytic cracking performance of mesoporous zeolite Y. Catalysis Communications, 73: 98 – 102.

4.       Mukti, R. R., Kamimura, Y. and Chaikittisilp, W. (2011). Hierarchically porous ZSM-5 synthesized by nonionic- and cationic-templating routes and their catalytic activity in liquid-phase esterification. ITB Journal of Science, 43 (1): 59 – 72.

5.       Zhu, J., Meng, X. and Xiao, F. (2013). Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 7(2): 233 – 248

6.       Wei, Y., Parmentier, T. E., de Jong, K. P. and Zecevic, J. (2015). Tailoring and visualizing the pore architecture of hierarchical zeolites. Chemical Society Reviews, 44(20): 7234 – 7261.

7.       Vernimmen, J., Meynen, V. and Cool, P. (2011). Synthesis and catalytic applications of combined zeolitic/mesoporous materials. Beilstein Journal of Nanotechnology, 2: 785 – 801.

8.       Moliner, M. (2012). Direct synthesis of functional zeolitic materials. ISRN Materials Science, 2012: 1 –24.

9.       Chen, Z., Zhang, J. and Yu, B. (2015). Amino acid mediated mesopore formation in LTA zeolites. Journal of Materials Chemistry A, 4(6): 2305 – 2313.

10.    Jiao, W. Q., Fu, W. H. and Liang, X. M. (2014). Preparation of hierarchically structured Y zeolite with low Si/Al ratio and Its applications in acetalization reactions. RSC Advances, 4(102): 58596 – 58607.

11.    Emdadi, L., Wu, Y., Zhu, G., Chang, C. C., Fan, W., Pham, T. and Liu, D. (2014). Dual template synthesis of meso- and microporous MFI zeolite nanosheet assemblies with tailored activity in catalytic reactions. Chemistry of Materials, 26(3): 1345 – 1355.

12.    Na, K. and Somorjai, G. A. (2014). Hierarchically nanoporous zeolites and their heterogeneous catalysis: Current status and future perspectives. Catalysis Letters, 145(1): 193 – 213.

13.    Jie, Z., X. M. and Fengshou, X. (2013). Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 7(2): 233 – 248.

14.    Corma, A., Fornés, V. and Martín-Aranda, R. M. (1990). Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters. Applied Catalysis, 59(1): 237 – 248.

15.    Muralidhar, L. and Girija, C. R. (2014). Simple and practical procedure for knoevenagel condensation under solvent-free conditions. Journal of Saudi Chemical Society, 18(5): 541 – 544.

16.    Yao, J., Zhang, L., and Wang, H. (2008). Synthesis of nanocrystalline sodalite with organic additives. Materials Letters, 62(24), 4028 – 4030.

17.    Shanbhag, G. V., Choi, M., Kim, J. and Ryoo, R. (2009). Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 264(1): 88 – 92.

18.    Rahul, R., Satyarthi, J. K. and Srinivas, D. (2011). Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel and biolubricants production. Indian Journal of Chemistry-Section A, 50: 1017 – 1025.

19.    Treacy, M. M. J. and Higgins J. B. (2001). Collection of simulated XRD powder patterns for zeolites. Elsevier, Amsterdam.

20.    Yao, J., Wang, H., Ratinac, K. R., and Ringer, S. P. (2006). Formation of colloidal hydroxy-sodalite nanocrystals by the direct transformation of silicalite nanocrystals. Chemistry of Materials, 18(6): 1394 – 1396.

 




Previous                    Content                    Next