Malaysian Journal of Analytical
Sciences Vol 21 No 4 (2017): 860 - 870
DOI:
https://doi.org/10.17576/mjas-2017-2104-12
SYNTHESIS OF MESOPOROUS SODALITE BY MIXED QUATERNARY
AMMONIUM CATION TEMPLATES FOR KNOEVENAGEL CONDENSATION REACTION
(Sintesis Sodalit Mesoliang dengan Campuran Templat-Templat
Kation Amonium Kuaterner untuk Tindak Balas Kondensasi Knoevenagel)
Mohamad Faiz Othman, Shima Shirani Lapari, Zainab
Ramli*, Sugeng Triwahyono
Department of
Chemistry, Faculty of Science,
Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: zainabr@utm.my
Received: 20
September 2016; Accepted: 16 May 2017
Abstract
Sodalite
(SOD) is a microporous zeolite with pore size about 2.8 Å which limits its role
as catalyst for the reaction involving bulky molecules. To overcome this
disadvantage, mesotemplate can be added to create mesoporosity in the synthesis
of SOD. A series of SOD samples
was synthesized using dual templates approach by mixing tetrapropylammonium
hydroxide (TPAOH) with different quaternary ammonium
cations. The samples were characterized using X-ray Diffraction (XRD), Fourier
Transformation Infrared (FTIR) and N2 adsorption analysis. From N2
adsorption analysis, only SOD sample prepared by mixing TPAOH with organosilane
(SOD-TO) showed the characteristic of mesoporosity with a narrow pore size
distribution peak centered at ca. 66
Å. The basicity properties of all SOD samples were evaluated by Hammett
indicators test and back titration method. While, the basicity property of
SOD-TO was compared with the microporous SOD (Na-SOD) using TPD-CO2
analysis. All SOD samples were tested in the Knoevenagel condensation reaction
of benzaldehyde and diethyl malonate, giving diethyl-2-benzylidenemalonate as
the main product. The results
showed that SOD-TO catalyst which possessing the highest amount of basicity and
the highest surface area with mesoporosity character gave the highest
percentages of conversion and yield of Knoevenagel reaction.
Keywords: sodalite, basic
catalyst, dual templates approach, mesoporous sodalite, Knoevenagel
condensation reaction
Abstrak
Sodalit (SOD)
ialah zeolit mikroliang dengan liang bersaiz sekitar 2.8 Å yang menghadkan
peranannya sebagai mangkin untuk tindak balas yang melibatkan molekul – molekul
yang besar. Untuk mengatasi kekangan ini, mesotemplat boleh ditambahkan dalam
sintesis SOD bagi mengwujudkan mesoliang dalam SOD. Satu siri SOD telah
disintesis menggunakan pendekatan dwi templat dengan campuran
tetrapropilamonium hidroksida (TPA) dengan pelbagai kation amonium kuaterner.
Semua sampel telah dicirikan menggunakan pembelauan sinar-X (XRD), Inframerah
Tranformasi Fourier (FTIR) dan analisis penjerapan N2. Daripada
analisis penjerapan N2, sampel SOD yang disintesis hasil campuran
TPA dengan organosilana (SOD-TO) sahaja yang menunjukkan ciri-ciri mesoliang
dengan puncak penyebaran sempit saiz liang berpusat di ca. 66 Å. Ciri-ciri kebesan untuk semua sampel SOD telah dinilai
menggunakan ujian petunjuk Hammett dan kaedah titratan berbalik. Manakala,
ciri-ciri kebesan SOD-TO telah dibandingkan dengan SOD mikroliang (Na-SOD)
menggunakan analisis TPD-CO2. Semua sampel SOD telah diuji dalam
tindak balas kondensasi Knoevenagel antara benzaldehid dan dietil malonat yang
menghasilkan dietil-2-benzilidenemalonat sebagai hasil utama. Keputusan
menunjukkan mangkin SOD-TO yang mempunyai jumlah kebesan dan luas permukaan
yang paling tinggi dengan kehadiran ciri mesoliang dalam strukturnya memberikan
peratusan penukaran dan hasil yang paling tinggi bagi tindak balas Knoevenagel.
Kata kunci: sodalit, mangkin bes, pendekatan dwi
templat, sodalit mesoliang dan tindak balas kondensasi Knoevenagel
References
1.
Weckhuysen,
B. M. and Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical
Society Reviews, 44 (20):
7022 – 7024.
2.
Arya,
K. and Tomar, R. (2015). Microporous zeolite catalyst system: An eco-approach
for regioselective synthesis of pyrimidobenzimidazoles. Research on Chemical
Intermediates, 41(6): 3389
– 3400.
3.
Zhao,
J., Wang, G., Qin, L., Li, H., Chen, Y. and Liu, B. (2016). Synthesis and
catalytic cracking performance of mesoporous zeolite Y. Catalysis
Communications, 73: 98 –
102.
4.
Mukti, R. R., Kamimura, Y. and
Chaikittisilp, W. (2011). Hierarchically porous ZSM-5 synthesized by
nonionic- and cationic-templating routes and their catalytic activity in
liquid-phase esterification. ITB Journal of Science, 43 (1): 59 – 72.
5.
Zhu,
J., Meng, X. and Xiao, F. (2013). Mesoporous zeolites as efficient catalysts
for oil refining and natural gas conversion. Frontiers of Chemical Science and Engineering, 7(2): 233 – 248
6.
Wei, Y.,
Parmentier, T. E., de Jong, K. P. and Zecevic, J. (2015). Tailoring and
visualizing the pore architecture of hierarchical zeolites. Chemical Society
Reviews, 44(20): 7234 –
7261.
7.
Vernimmen,
J., Meynen, V. and Cool, P. (2011). Synthesis and catalytic applications of
combined zeolitic/mesoporous materials. Beilstein Journal of Nanotechnology,
2: 785 – 801.
8.
Moliner,
M. (2012). Direct synthesis of functional zeolitic materials. ISRN Materials
Science, 2012: 1 –24.
9.
Chen,
Z., Zhang, J. and Yu, B. (2015). Amino acid mediated mesopore formation in LTA
zeolites. Journal of Materials Chemistry A, 4(6): 2305 – 2313.
10.
Jiao,
W. Q., Fu, W. H. and Liang, X. M. (2014). Preparation of hierarchically
structured Y zeolite with low Si/Al ratio and Its applications in acetalization
reactions. RSC Advances, 4(102):
58596 – 58607.
11.
Emdadi,
L., Wu, Y., Zhu, G., Chang, C. C., Fan, W., Pham, T. and Liu, D. (2014). Dual
template synthesis of meso- and microporous MFI zeolite nanosheet assemblies
with tailored activity in catalytic reactions. Chemistry of Materials, 26(3): 1345 – 1355.
12.
Na,
K. and Somorjai, G. A. (2014). Hierarchically nanoporous zeolites and their
heterogeneous catalysis: Current status and future perspectives. Catalysis
Letters, 145(1): 193 – 213.
13.
Jie,
Z., X. M. and Fengshou, X. (2013). Mesoporous zeolites as efficient catalysts
for oil refining and natural gas conversion. Frontiers of Chemical Science
and Engineering, 7(2): 233
– 248.
14.
Corma,
A., Fornés, V. and Martín-Aranda, R. M. (1990). Zeolites as base catalysts:
Condensation of aldehydes with derivatives of malonic esters. Applied
Catalysis, 59(1): 237 –
248.
15.
Muralidhar,
L. and Girija, C. R. (2014). Simple and practical procedure for knoevenagel
condensation under solvent-free conditions. Journal of Saudi Chemical
Society, 18(5): 541 – 544.
16.
Yao,
J., Zhang, L., and Wang, H. (2008). Synthesis of nanocrystalline sodalite with
organic additives. Materials Letters, 62(24), 4028 – 4030.
17.
Shanbhag,
G. V., Choi, M., Kim, J. and Ryoo, R. (2009). Mesoporous sodalite: A novel,
stable solid catalyst for base-catalyzed organic transformations. Journal of
Catalysis, 264(1): 88 – 92.
18.
Rahul, R., Satyarthi, J. K. and Srinivas, D. (2011).
Lanthanum and zinc incorporated hydrotalcites as solid base catalysts for biodiesel
and biolubricants production. Indian
Journal of Chemistry-Section A, 50: 1017 – 1025.
19.
Treacy,
M. M. J. and Higgins J. B. (2001). Collection of simulated XRD powder patterns
for zeolites. Elsevier, Amsterdam.
20.
Yao,
J., Wang, H., Ratinac, K. R., and Ringer, S. P. (2006). Formation of colloidal
hydroxy-sodalite nanocrystals by the direct transformation of silicalite
nanocrystals. Chemistry of Materials, 18(6): 1394 – 1396.