Malaysian
Journal of Analytical Sciences Vol 21 No 4 (2017): 839 - 848
DOI:
https://doi.org/10.17576/mjas-2017-2104-10
PRODUCTION OF
ETHYLENE FROM ETHANOL DEHYDRATION OVER H3PO4-MODIFIED
CERIUM OXIDE CATALYSTS
(Penghasilan Etilena Daripada Pendehidratan Etanol Dengan
Mangkin Serium Oksida Terubahsuai H3PO4)
Soo Ling Chong1,
Jiah Chee Soh1, Chin Kui Cheng1,2*
1Faculty of Chemical & Natural Resources
Engineering
2Centre of Excellence for Advanced Research in Fluid
Flow
Universiti Malaysia Pahang, 26300 Kuantan, Pahang,
Malaysia
*Corresponding author: chinkui@ump.edu.my
Received: 20
September 2016; Accepted: 16 May 2017
Abstract
Production of ethylene from ethanol dehydration was
investigated over H3PO4 (10 wt.% to 30wt.%)-modified
cerium oxide catalysts synthesized by wet impregnation technique. The prepared
catalysts were characterized using scanning electron microscope (SEM), N2
adsorption-desorption method, X-ray diffraction (XRD), Fourier transform
infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) for the
physicochemical properties. The ethanol catalytic dehydration was carried out in
a fixed-bed reactor at 673-773 K and at ethanol partial pressure of 33 kPa. The
effects of phosphorus loading on catalyst and reaction temperatures were
investigated in terms of catalytic activity towards product selectivity and
yield. Overall, the selectivity and yield of ethylene increased with the
temperature and phosphorus loading. The highest ethylene selectivity and yield
were 99% and 65%, respectively, at 773 K and 33 kPa over the 30 wt.% H3PO4-modified
cerium oxide.
Keywords: ethylene
production, ethanol dehydration, H3PO4 modification,
cerium oxide
Abstrak
Penghasilan
etilena daripada pendehidratan etanol telah dikaji dengan mangkin serium oksida terubahsuai
H3PO4 (10 wt.% hingga 30 wt.%) yang dihasilkan melalui
kaedah pengisitepuan. Mangkin disediakan telah
dicirikan menggunakan mikroskop elektron imbasan (SEM), kaedah penjerapan-nyahjerapan N2,
pembelauan sinar-X (XRD), spektroskopi
inframerah transformasi Fourier (FTIR) dan analisis termogravimetri (TGA) untuk
mengetahui sifat fizikokimia mangkin. Tindak balas
pendehidratan etanol dengan mangkin dilakukan di dalam reaktor turus terpadat
pada julat suhu 673 – 773 K dan tekanan separa etanol 33 kPa. Pengaruh muatan H3PO4
dan suhu tindak balas kimia dalam pendehidratan etanol telah dikaji. Secara
keseluruhan, kepilihan dan hasil etena meningkat dengan muatan H3PO4
dan suhu tindak balas kimia. Kepilihan dan hasil etena tertinggi masing-masing
ialah 99% dan 65% pada 773 K dan 33kPa untuk mangkin serium oksida terubahsuai H3PO4 30
wt.%.
Kata kunci: penghasilan etilena, pendehidratan etanol, pengubahsuaian H3PO4,
serium oksida
References
1.
Morschbacker, A. (2009). Bio-ethanol based ethylene.Polymer Review,
49 :79 – 84.
2.
Takahara, I., Saito, M., Inaba, M. and Murata, K. (2005). Dehydration
of ethanol into ethylene over solid acid catalysts.Catalysis Letters, 10(3–4): 249 – 252.
3.
Fan, D., Dai, D.-J., and Wu, H.-S. (2012). Ethylene formation
by catalytic dehydration of ethanol with industrial considerations. Materials
(Basel), 6(1): 101 – 115.
4.
Aguayo, A. T., Gayubo, A. G., Atutxa, A., Valle, B. and
Bilbao, J. (2015). Regeneration of a HZSM-5 zeolite catalyst deactivated in the
transformation of aqueous ethanol into hydrocarbons. Catalysis Today,
107 – 108: 410 – 416.
5.
Phung, T. K., Radikapratama, R., Garbarino, G., Lagazzo, A., Riani,
P. and Busca, G. (2015). Tuning of product selectivity in the conversion of
ethanol to hydrocarbons over H-ZSM-5 based zeolite catalysts. Fuel Processing
Technology, 137: 290 – 297.
6.
Phung,T. K., Proietti Hernández, L.,Lagazzo, A. and Busca, G.
(2015). Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis
acidity, Brønsted acidity and confinement effects. Applied Catalysis A General,
493: 77 – 89.
7.
Varisli, D., Dogu, T. and Dogu, G. (2007). Ethylene and
diethyl-ether production by dehydration reaction of ethanol over different
heteropolyacid catalysts. Chemical Engineering Science, 62: 5349 – 5352.
8.
Madeira, F. F., Gnep, N. S., Magnoux, P., Maury, S. and
Cadran, N. (2009). Ethanol transformation over HFAU, HBEA and HMFI zeolites
presenting similar Brønsted acidity. Applied Catalysis A General, 367(1–2): 39 – 46.
9.
Zhan, N., Hu, Y., Li, H., Yu, D., Han, Y. and Huang, H.
(2010). Lanthanum-phosphorous modified HZSM-5 catalysts in dehydration of
ethanol to ethylene: A comparative analysis. Catalysis Communications,
11(7): 633 – 637.
10. DeWilde, J. F., Chiang, H., Hickman, D., Ho, C. R., and Bhan, A. (2013). Kinetics
and mechanism of ethanol dehydration on γ-Al2O3: Tthe
critical role of dimer inibition. ACS Catalysis, 3(4): 798 – 807.
11. Cai, W., Wang, F.,Zhan, E.,Van Veen, A. C., Mirodatos, C. and Shen,W.
(2008). Hydrogen production from ethanol over Ir/CeO2 catalysts: A
comparative study of steam reforming, partial oxidation and oxidative steam
reforming. Journal of Catalysis, 257(1): 96 – 107.
12. Diagne, C., Idriss, H. and Kiennemann, A. (2002). Hydrogen production by
ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catalysis
Communications, 3(12): 565 – 571.
13. Mudiyanselage, K., Al-Shankiti, I., Foulis, A., Llorca, J. and Idriss, H. (2016).
Reactions of ethanol over CeO2 and Ru/CeO2 catalysts. Applied
Catalysis B Environmental, 197: 198 - 205.
14. Wang, H., Ye, J., Liu, Y., Li, Y. and Qin, Y. (2007). Steam reforming of
ethanol over Co3O4/CeO2 catalysts prepared by
different methods. Catalysis Today, 129(3–4): 305 – 312.
15. Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y. and Shen, W. (2006). Steam
reforming of bio-ethanol for the production of hydrogen over ceria-supported
Co, Ir and Ni catalysts. Catalysis Communications, 7(6): 367–372.
16. Ramesh, K., Jie, C., Han, Y. F. and
Borgna, A. (2010). Synthesis, characterization, and catalytic activity of
phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial
Engineering Chemistry Research, 49(9): 4080 – 4090.
17. Zhang, X., Wang, R., Yang, X. and Zhang, F. (2008). Comparison of four catalysts
in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous
Materials, 116(1–3): 210 – 215.
18. Yacob, A. R., Bello, A. M. and Kabo, K. S. (2016). The effect of
polyoxyethylene (40) stearate surfactant on novel synthesis of mesoporous
γ-alumina from Kano kaolin. Arabian Jounal of Chemistry, 9(2): 297 –3 04.
19. White, K. M., Lee, P. L., Chupas, P. J., Chapman, K. W., Payzant, E. A., Jupe,
A. C., Bassett, W. A., Zha, C. S. and
Wilkinson, A. P. (2008). Synthesis, symmetry, and physical properties of cerium
pyrophosphate. Chemistry of Materials, 20(11): 3728 – 3734.
20. Armaroli, T., Busca, G., Carlini, C., Giuttari, M., Raspolli Galletti, A.
M. and Sbrana, G. (2000). Acid sites characterization of niobium phosphate
catalysts and their activity in fructose dehydration to
5-hydroxymethyl-2-furaldehyde. Journal of
Molecular Catalysis A Chemical, 151(1): 233 – 243.
21. Brandão, R. F., Quirino, R. L., Mello,V. M., Tavares, A. P., Peres, A. C.,Guinhos,
F., Rubim, J. C. and Suarez, P. A. Z. (2009). Synthesis, characterization and
use of Nb2O5 based catalysts in producing biofuels by
transesterification, esterification and pyrolysis. Journal of the Brazilian Chemical
Society, 20(5): 954 – 966.
22. Ramesh,K., Hui, L. M., Han,Y. F., and Borgna, A. (2009). Structure and
reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catalysis
Communications, 10(5): 567 – 571.
23. Zaera, F. (2001). Probing catalytic reactions at surfaces. Progress
Surface Science, 69(1):1 – 98.