Malaysian Journal of Analytical Sciences Vol 21 No 4 (2017): 839 - 848

DOI: https://doi.org/10.17576/mjas-2017-2104-10

 

 

 

PRODUCTION OF ETHYLENE FROM ETHANOL DEHYDRATION OVER H3PO4-MODIFIED CERIUM OXIDE CATALYSTS

 

(Penghasilan Etilena Daripada Pendehidratan Etanol Dengan Mangkin Serium Oksida Terubahsuai H3PO4)

 

Soo Ling Chong1, Jiah Chee Soh1, Chin Kui Cheng1,2*

 

1Faculty of Chemical & Natural Resources Engineering

2Centre of Excellence for Advanced Research in Fluid Flow

Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

 

*Corresponding author: chinkui@ump.edu.my

 

 

Received: 20 September 2016; Accepted: 16 May 2017

 

 

Abstract

Production of ethylene from ethanol dehydration was investigated over H3PO4 (10 wt.% to 30wt.%)-modified cerium oxide catalysts synthesized by wet impregnation technique. The prepared catalysts were characterized using scanning electron microscope (SEM), N2 adsorption-desorption method, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) for the physicochemical properties. The ethanol catalytic dehydration was carried out in a fixed-bed reactor at 673-773 K and at ethanol partial pressure of 33 kPa. The effects of phosphorus loading on catalyst and reaction temperatures were investigated in terms of catalytic activity towards product selectivity and yield. Overall, the selectivity and yield of ethylene increased with the temperature and phosphorus loading. The highest ethylene selectivity and yield were 99% and 65%, respectively, at 773 K and 33 kPa over the 30 wt.% H3PO4-modified cerium oxide.

 

Keywords:  ethylene production, ethanol dehydration, H3PO4 modification, cerium oxide

 

Abstrak

Penghasilan etilena daripada pendehidratan etanol telah dikaji dengan mangkin serium oksida terubahsuai H3PO4 (10 wt.% hingga 30 wt.%) yang dihasilkan melalui kaedah pengisitepuan. Mangkin disediakan telah dicirikan menggunakan mikroskop elektron imbasan (SEM), kaedah  penjerapan-nyahjerapan N2, pembelauan sinar-X (XRD), spektroskopi inframerah transformasi Fourier (FTIR) dan analisis termogravimetri (TGA) untuk mengetahui sifat fizikokimia mangkin. Tindak balas pendehidratan etanol dengan mangkin dilakukan di dalam reaktor turus terpadat pada julat suhu 673 – 773 K dan tekanan separa etanol 33 kPa. Pengaruh muatan H3PO4 dan suhu tindak balas kimia dalam pendehidratan etanol telah dikaji. Secara keseluruhan, kepilihan dan hasil etena meningkat dengan muatan H3PO4 dan suhu tindak balas kimia. Kepilihan dan hasil etena tertinggi masing-masing ialah 99% dan 65% pada 773 K dan 33kPa untuk mangkin serium oksida terubahsuai H3PO4 30 wt.%.

 

Kata kunci:  penghasilan etilena, pendehidratan etanol, pengubahsuaian H3PO4, serium oksida

 

References

1.       Morschbacker, A. (2009). Bio-ethanol based ethylene.Polymer Review, 49 :79 – 84.

2.       Takahara, I., Saito, M., Inaba, M. and Murata, K. (2005). Dehydration of ethanol into ethylene over solid acid catalysts.Catalysis Letters, 10(3–4): 249 – 252.

3.       Fan, D., Dai, D.-J., and Wu, H.-S. (2012). Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials (Basel), 6(1): 101 – 115.

4.       Aguayo, A. T., Gayubo, A. G., Atutxa, A., Valle, B. and Bilbao, J. (2015). Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons. Catalysis Today, 107 – 108: 410 – 416.

5.       Phung, T. K., Radikapratama, R., Garbarino, G., Lagazzo, A., Riani, P. and Busca, G. (2015). Tuning of product selectivity in the conversion of ethanol to hydrocarbons over H-ZSM-5 based zeolite catalysts. Fuel Processing Technology, 137: 290 – 297.

6.       Phung,T. K., Proietti Hernández, L.,Lagazzo, A. and Busca, G. (2015). Dehydration of ethanol over zeolites, silica alumina and alumina: Lewis acidity, Brønsted acidity and confinement effects. Applied Catalysis A General, 493: 77 – 89.

7.       Varisli, D., Dogu, T. and Dogu, G. (2007). Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chemical Engineering Science, 62: 5349 – 5352.

8.       Madeira, F. F., Gnep, N. S., Magnoux, P., Maury, S. and Cadran, N. (2009). Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brønsted acidity. Applied Catalysis A General,  367(1–2): 39 – 46.

9.       Zhan, N., Hu, Y., Li, H., Yu, D., Han, Y. and Huang, H. (2010). Lanthanum-phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis. Catalysis Communications, 11(7): 633 – 637.

10.    DeWilde, J. F., Chiang, H., Hickman, D., Ho, C. R., and Bhan, A. (2013). Kinetics and mechanism of ethanol dehydration on γ-Al2O3: Tthe critical role of dimer inibition. ACS Catalysis, 3(4): 798 – 807.

11.    Cai, W., Wang, F.,Zhan, E.,Van Veen, A. C., Mirodatos, C. and Shen,W. (2008). Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis, 257(1): 96 – 107.

12.    Diagne, C., Idriss, H. and Kiennemann, A. (2002). Hydrogen production by ethanol reforming over Rh/CeO2–ZrO2 catalysts. Catalysis Communications, 3(12): 565 – 571.

13.    Mudiyanselage, K., Al-Shankiti, I., Foulis, A., Llorca, J. and Idriss, H. (2016). Reactions of ethanol over CeO2 and Ru/CeO2 catalysts. Applied Catalysis B Environmental, 197: 198 - 205.

14.    Wang, H., Ye, J., Liu, Y., Li, Y. and Qin, Y. (2007). Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods. Catalysis Today, 129(3–4): 305 – 312.

15.    Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y. and Shen, W. (2006). Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catalysis Communications, 7(6): 367–372.

16.    Ramesh, K., Jie, C., Han, Y.  F. and Borgna, A. (2010). Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration. Industrial Engineering Chemistry Research, 49(9): 4080 – 4090.

17.    Zhang, X., Wang, R., Yang, X. and Zhang, F. (2008). Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Materials, 116(1–3): 210 – 215.

18.    Yacob, A. R., Bello, A. M. and Kabo, K. S. (2016). The effect of polyoxyethylene (40) stearate surfactant on novel synthesis of mesoporous γ-alumina from Kano kaolin. Arabian Jounal of Chemistry, 9(2): 297 –3 04.

19.    White, K. M., Lee, P. L., Chupas, P. J., Chapman, K. W., Payzant, E. A., Jupe, A. C., Bassett, W.  A., Zha, C. S. and Wilkinson, A. P. (2008). Synthesis, symmetry, and physical properties of cerium pyrophosphate. Chemistry of Materials, 20(11): 3728 – 3734.

20.    Armaroli, T., Busca, G., Carlini, C., Giuttari, M., Raspolli Galletti, A. M. and Sbrana, G. (2000). Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde. Journal of  Molecular Catalysis A Chemical, 151(1): 233 – 243.

21.    Brandão, R. F., Quirino, R. L., Mello,V. M., Tavares, A. P., Peres, A. C.,Guinhos, F., Rubim, J. C. and Suarez, P. A. Z. (2009). Synthesis, characterization and use of Nb2O5 based catalysts in producing biofuels by transesterification, esterification and pyrolysis. Journal of the Brazilian Chemical Society, 20(5): 954 – 966.

22.    Ramesh,K., Hui, L. M., Han,Y. F., and Borgna, A. (2009). Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration. Catalysis Communications, 10(5): 567 – 571.

23.    Zaera, F. (2001). Probing catalytic reactions at surfaces. Progress Surface Science, 69(1):1 – 98.

 




Previous                    Content                    Next