Malaysian Journal of Analytical Sciences Vol 21 No 4
(2017): 830 - 838
DOI:
https://doi.org/10.17576/mjas-2017-2104-09
CHARACTERIZATION AND DEACIDIFICATION OF ACIDIC PETROLEUM
CRUDE OIL UTILIZING METAL OXIDE CATALYST SUPPORTED ON ALUMINA AND
AMMONIATED POLYETHYLENE GLYCOL SOLUTION
(Pencirian dan
Penyahasidan Minyak Mentah Petroleum Menggunakan Mangkin Logam Oksida Disokong
Dengan Alumina dan Larutan Ammonia-Polietilena Glikol)
Nurasmat Mohd
Shukri, Jafariah Jaafar*, Wan Azelee Wan Abu Bakar, Zaiton Abdul
Majid
Department of
Chemistry, Faculty of Science,
Universiti Teknologi
Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author: jafariah@kimia.fs.utm.my
Received: 20
September 2016; Accepted: 16 May 2017
Abstract
The presence of naphthenic acid (NA) in petroleum crude oil may cause
serious corrosion problem for refinery processing equipment. In this work, an
alternative method to remove NA is investigated based on the catalytic
deacidification reaction to achieve the target of lowering the total acid
number (TAN) as required by PETRONAS to be less than 1. Ammoniated polyethylene
glycol (NH3-PEG) was formulated as a deacidifying agent with various
concentrations ranging from 100 – 1000 mg/L for crude oil. Cerium oxide based
catalyst supported on alumina was synthesized via wet impregnation method and
characterized using X-ray diffraction spectroscopy (XRD),
Brunauer–Emmett–Teller (BET) and thermogravimetry analysis-differential thermal
analysis (TGA-DTA). Parameters such as amount of basic chemical dosing, type of
metal oxides, catalyst calcination temperature and reusability of catalyst on
the removal of NA was studied. The results showed the TAN value for crude oil
was reduced by 70.6% to a TAN of 0.74 mg KOH/g by using 1000 mg/L of NH3-PEG
dosing aids by Ce/Al2O3 catalyst calcined at 1000 oC.
Keywords: total acid number, naphthenic acid, metal
oxide catalyst, ammoniated polyethylene glycol, alumina
Abstrak
Kehadiran asid naftenik (NA) dalam minyak mentah boleh menyebabkan masalah
hakisan yang serius kepada peralatan pemprosesan penapisan. Di dalam kajian ini,
satu kaedah alternatif untuk menyingkir NA telah disiasat berdasarkan tindak balas
penyahasidan pemangkin untuk mencapai sasaran jumlah nombor asid (TAN) kurang daripada
1 seperti yang dikehendaki PETRONAS. Larutan ammonia polietilena glikol (NH3-PEG)
telah diformulakan sebagai ejen penyahasidan dengan pelbagai kepekatan antara
100 – 1000 mg/L. Mangkin serium oksida disokong dengan alumina telah disintesis
meggunakan kaedah pengisi tepuan basah dan dicirikan menggunakan spektroskopi pembelauan
sinar-X (XRD), Brunauer–Emmett–Teller
(BET) dan analisis termogravimetri – analisis pengkamiran terma (TGA-DTA).
Parameter seperti jumlah dos kimia bes, jenis logam oksida, suhu pengkalsinan mangkin
dan kebolehgunaan mangkin terhadap penyingkiran NA telah dikaji. Hasil kajian menunjukkan
nilai TAN bagi minyak mentah telah dikurangkan sebanyak 70.6% kepada TAN 0.74
mg KOH/g dengan menggunakan 1000 mg/L dos NH3-PEG dibantu oleh mangkin
Ce/Al2O3 dikalsinkan pada 1000 oC.
Kata kunci: nombor jumlah asid,
asid naftenik, mangkin, ammonia polietilena glikol, alumina
References
1.
Slavcheva,
E., Shone, B. and Turnbull, A. (1999). Review of naphthenic acid corrosion in oil
refining. British Corrosion Journal
34(2): 125 – 131.
2.
Brient, J. A., Wessner, P. J. and Doyle, M. N.
(2000). Naphthenic Acids. In: Kirk-Othmer Encyclopedia of Chemical Technology.
John Wiley and Sons, Inc.
3.
Saad,O. M., Gasmelseed, G. A. and Hamid, A. H.
M. (2014). Separation of naphthenic acid from Sudanese
crude oil using local activated clays. Journal of Applied and Industrial Sciences, 2(1): 14 –18.
4.
Halbert, T. R., Riley, K. L., Trachte, K. L.
and Vannauker, D. L. (1999). Process for reduction of total acid number in
crude oil. US Patent 5,910,242. pp. 1 – 6.
5.
Braccknell, S. N. D. and Osborne, C. G. (2002).
Process for deacidifying a crude oil system.US Patent 6,464,859. pp. 1 – 6.
6.
Shi, L. J., Shen, B. X. and Wang, G.Q. (2008).
Removal of naphthenic acids from Beijing crude oil by forming ionic liquids. Energy
Fuels, 22: 4177 – 4181.
7.
Toemen, S. Bakar, W. A. W. A. and Ali, R. (2014).
Investigation of Ru/Mn/Ce/Al2O3 catalyst for carbon
dioxide methanation: Catalytic optimization, physicochemical studies and RSM. Journal
of the Taiwan Institute of Chemical Engineers, 45 (5): 2370 – 2378.
8.
Ayastuy, J. L., Fernandez-Puertas, E.,
Gonzalez-Marcos, M. P. and Gutierrez-Ortiz, M. A. (2012). Transition metal
promoters in CuO/CeO2 catalysts for CO removal from hydrogen
streams. International Journal of Hydrogen Energy, 37: 7385 –7397.
9.
Alouche, A.
(2008). Preparation
and characterization of copper and/or cerium catalysts supported on alumina or
ceria. Jordan Journal of Mechanical and Industrial Engineering, 2: 111 – 116.