Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 456 - 465

 

 

 

PALM-BASED POLYURETHANE WITH SOYBEAN PHOSPHATE ESTER AS A FIRE RETARDANT

 

(Poliuretana Sawit dengan Ester Fosfat Soya Sebagai Perencat Api)

 

Nor Rabbi’atul ‘Adawiyah Norzali1, Khairiah Haji Badri1,2*, Ong Soo Ping1, Ishak Ahmad1,2

 

1School of Chemical Sciences and Food Technology

2Polymer Research Center

Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: kaybadri@ukm.edu.my

 

 

Abstract

Palm-based polyurethane (PU) with soybean oil phosphate ester (PE) as a fire retardant was prepared. The effect of PE to the mechanical and burning properties of the PU was investigated. The PE was synthesized via ring-opening hydrolysis between o-phosphoric acid (o-H3PO4) and epoxidized soybean oil. The synthesis was conducted at 60-70 °C. The concentration of o-H3PO4 was varied at 2.5, 5.0 and 7.5 wt%. PE with 2.5 wt% H3PO4 showed the lowest acid value (2.8 mg·g-1) but high hydroxyl value (351.6 mg·g-1). PU containing PE (PU-PE) has higher density (60-61 kg·m-3) compared to control PU (49.7 kg·m-3). Burning rate decreased from 2.16×10-3 m·s-1 for control PU to 1.26×10-3 m·s-1, 1.06 10-3 m·s-1 and 0.6×10-3m·s-1 for PU-PE at 5, 10 and 15 wt% PE respectively. However, the addition of PE into the PU system gradually decreased the compression stress and modulus of the PU-PE.

 

Keywords: Epoxidized soybean oil, fire retardant, palm-based polyurethane, phosphate ester

 

Abstrak

Poliuretana sawit (PU) mengandungi ester fosfat minyak soya (PE) sebagai perencat api telah berjaya dihasilkan. Kesan PE terhadap sifat mekanik dan kebakaran PU telah dikaji. PE disintesis melalui tindak balas hidrolisis pembukaan gelang antara asid fosforik (o-H3PO4) dan minyak soya terepoksida. Sintesis dijalankan pada 60-70 °C. Kepekatan o-H3PO4 divariasikan pada 2.5, 5.0 dan 7.5 bt%. PE dengan 2.5 bt% o-H3PO4 menunjukkan nilai asid yang rendah (2.8 mg·g-1) tetapi tinggi nilai hidroksil 351.6 mg·g-1). PU yang mengandungi PE(PU-PE) mempunyai ketumpatan yang tinggi (60-61 kg·m-3) berbanding PU kawalan (49.7 kg·m-3). Kadar kebakaran menurun dari 216×10-3 m·s-1 untuk PU kawalan kepada 1.26×10-3 m·s-1, 1.06 10-3 m·s-1 and 0.6×10-3m·s-1 masing-masing untuk PU dengan 5, 10 and 15 bt% PE. Walau bagaimanapun, penambahan PE ke dalam sistem PU menyebabkan kekuatan dan modulus mampatan menurun secara berperingkat.

 

Kata kunci: Minyak soya terepoksida, perencat api, poliuretana sawit, ester fosfat

 

References

1.        Ferrer, M.C.C., Babb, D. & Ryan, A.J. (2008). Characterisation of polyurethane networks based on vegetable derived polyol. Polym. 49:  3279-3287.

2.        Badri, K.H. (2012). Biobased Polyurethane from Palm Kernel Oil-Based Polyol. Polyurethane. InTech.

3.        Beltran, A. A. & Boyaca, L.A. (2011). Preparation of Oleochemical Polyols Derived from Soybean Oil. Lat. Am. Applied Research. 41:  69-74.

4.        Guo, Y., Hardesty, J.H., Mannari, V.M. & Jr, J.L.M. (2007). Hydrolysis of Epoxidized Soybean Oil in the Presence of Phosphoric Acid. J. Am. Oil Chem. Soc. 84:  929-935.

5.        Jia, L.K., Gong, L.X., Ji, W.J. & Kan, C.Y. (2011). Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol derived from natural source. Chinese Chem. Let. 22 (11):  1289-1292.

6.        Montero de Espinosa, L. & Meier, M.A.R. (2011). Plant oils: The perfect renewable resource for polymer science European Polym. J. 47 (5):  837-852.

7.        Pfister, D.P., Xia, Y. & Larock, R.C. (2011). Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem. 4 (6):  703-717.

8.        Norzali, N.R.A., Badri, K.H. & Nuawi, M.Z. (2011). Effect of Aluminum Hydroxide Loading on the Compression Stress and Modulus, Thermal Conductivity and Acoustic Properties of Palm-Based Polyurethane Hybrid Composite. Sains Malaysiana. 40 (4):  379-384.

9.        Badri, K.H., Othman, Z.B. & Razali, I.M. (2005). Mechanical properties of poyurethane composites from oil palm resources. Iranian Polym. J. 14 (5):  441-448.

10.     Chung, Y.-j., Kim, Y. & Kim, S. (2009). Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II). J. Ind. Eng. Chem. 15 (6):  888-893.

11.     Ashida, K., (2007). Polyurethane and Related Foams: Chemistry and Technology. Taylor & Francis: New York.

12.     Liang, S., Neisius, M., Mispreuve, H., Naescher, R. & Gaan, S. (2012). Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds. Polym. Deg.  Stab. 97 (11):  2428-2440.

13.     Van der Veen, I. & De Boer, J. (2012). Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 88 (10):  1119-1153.

14.     Guo, Y., Mannari, V., Patel, P. & Massingill, J. (2006). Self-emulsifiable soybean oil phosphate ester polyols for low-VOC corrosion resistant coatings. J.  Coatings Tech. and Research. 3 (4):  327-331.

15.     Firdaus, F.E. (2011). Relationship od ReactionTemperature on Phosphate Oligomers Reactivity to Properties of Soy-Poyurethane. World Academy of Science, Engineering and Technology. 76:  230-234.

16.     Fan, H., Tekeei, A., Suppes, G.J. & Hsieh, F.-H. (2012). Physical Properties of Soy-Phosphate Polyol-Based Rigid Polyurethane Foams. Int. J. Polym. Sci. 2012:  1-8.

17.     Latere Dwan’Isa, J.-P., Mohanty, A.K., Misra, M., Drzal, L.T. & Kazemizadeh, M. (2003). Novel Biobased Polyurethanes Synthesized from Soybean Phosphate Ester Polyols: Thermomechanical Properties Evaluations. J.  Polym. and the Environment. 11 (4):  161-168.

18.     Derawi, D. & Salimon, J. (2010). Optimization on Epoxidation of Palm Olein by Using Performic Acid. e-Journal of Chemistry. 7 (4):  1440-1448.

19.     Pavia, D.L., Lampman, G.M. & Kriz, G.S., (2001). Introduction to Spectroscopy. Brooks/Cole: California. 

20.     Narine, S.S., Kong, X., Bouzidi, L. & Sporns, P. (2007). Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II. Foams. J. Am. Oil Chem. Soc. 84:  66-72.

21.     Badri, K.H. & Redwan, A.M. (2010). Effect of Phosphite Loading on the Mechanical and Fire Properties of Palm-Based Polyurethane. Sains Malaysiana. 39 (5):  769-774.

22.     Zhang, L., Zhang, M., Hu, L. and Zhou, Y. 2014. Synthesis of Rigid Polyurethane Foams with Castor Oil-based Flame Retardant Polyols. Industrial Crops and Products. 52:  380-388.

23.     Pan, L.L., Li, G.Y., Su, Y.C. and Lian, J.S. 2012. Fire retardant mechanism analysis between ammonium polyphosphate and triphenyl phosphate in unsaturated polyester resin. Polym Deg Stab. 97 (9):  1801-1806.

24.     Chattopadhyay, D.K. and Webster, D.C. 2009. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34 (10):  1068-1133.

25.     Hörold, S. 1999. Phosphorus flame retardants in thermoset resins. Polym. Deg. Stab. 64 (3):  427-431.

26.     Kuryla, W.C. and Papa, A.J. 1978. Flame Retardancy of Polymeric Materials. Vol. 4. Marcel Dekker, Inc: New York

27.     Shih, Y.-F., Wang, Y.-T., Jeng, R.-J. and Wei, K.-M. 2004. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym. Deg. Stab. 86 (2):  339-348.

 

 

Previous                    Content                    Next