Malaysian
Journal of Analytical Sciences Vol 18 No 2 (2014): 456 - 465
PALM-BASED POLYURETHANE WITH SOYBEAN PHOSPHATE ESTER
AS A FIRE RETARDANT
(Poliuretana Sawit dengan Ester Fosfat Soya
Sebagai Perencat Api)
Nor Rabbi’atul ‘Adawiyah Norzali1,
Khairiah Haji Badri1,2*, Ong Soo Ping1, Ishak
Ahmad1,2
1School of Chemical Sciences and Food Technology
2Polymer Research Center
Faculty of
Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: kaybadri@ukm.edu.my
Abstract
Palm-based
polyurethane (PU) with soybean oil phosphate ester (PE) as a fire retardant was
prepared. The effect of PE to the mechanical and burning properties of the PU
was investigated. The PE was synthesized via ring-opening hydrolysis between o-phosphoric acid (o-H3PO4) and epoxidized soybean oil. The
synthesis was conducted at 60-70 °C. The concentration of o-H3PO4 was varied at 2.5, 5.0 and 7.5 wt%.
PE with 2.5 wt% H3PO4 showed the lowest acid value (2.8
mg·g-1) but high hydroxyl value (351.6 mg·g-1). PU
containing PE (PU-PE) has higher density (60-61 kg·m-3) compared to
control PU (49.7 kg·m-3). Burning rate decreased from 2.16×10-3
m·s-1 for control PU to 1.26×10-3 m·s-1,
1.06 10-3 m·s-1 and 0.6×10-3m·s-1
for PU-PE at 5, 10 and 15 wt% PE respectively. However, the addition of PE into
the PU system gradually decreased the compression stress and modulus of the
PU-PE.
Keywords:
Epoxidized
soybean oil, fire retardant, palm-based polyurethane, phosphate ester
Abstrak
Poliuretana sawit (PU) mengandungi ester fosfat
minyak soya (PE) sebagai perencat api telah berjaya dihasilkan. Kesan PE
terhadap sifat mekanik dan kebakaran PU telah dikaji. PE disintesis melalui
tindak balas hidrolisis pembukaan gelang antara asid fosforik (o-H3PO4)
dan minyak soya terepoksida. Sintesis dijalankan pada 60-70 °C. Kepekatan
o-H3PO4 divariasikan pada 2.5, 5.0 dan 7.5 bt%. PE dengan
2.5 bt% o-H3PO4 menunjukkan nilai asid yang rendah (2.8
mg·g-1) tetapi tinggi nilai hidroksil 351.6 mg·g-1). PU
yang mengandungi PE(PU-PE) mempunyai ketumpatan yang tinggi (60-61 kg·m-3)
berbanding PU kawalan (49.7 kg·m-3). Kadar kebakaran menurun dari
216×10-3 m·s-1 untuk PU kawalan kepada 1.26×10-3
m·s-1, 1.06 10-3 m·s-1 and 0.6×10-3m·s-1
masing-masing untuk PU dengan 5, 10 and 15 bt% PE. Walau bagaimanapun,
penambahan PE ke dalam sistem PU menyebabkan kekuatan dan modulus mampatan
menurun secara berperingkat.
Kata
kunci:
Minyak soya terepoksida, perencat api, poliuretana sawit, ester fosfat
References
1.
Ferrer, M.C.C., Babb, D. & Ryan, A.J. (2008).
Characterisation of polyurethane networks based on vegetable derived polyol. Polym.
49: 3279-3287.
2.
Badri, K.H. (2012). Biobased Polyurethane from Palm Kernel
Oil-Based Polyol. Polyurethane. InTech.
3.
Beltran, A. A. & Boyaca, L.A. (2011). Preparation of
Oleochemical Polyols Derived from Soybean Oil. Lat. Am. Applied Research.
41: 69-74.
4.
Guo, Y., Hardesty, J.H., Mannari, V.M. & Jr, J.L.M.
(2007). Hydrolysis of Epoxidized Soybean Oil in the Presence of Phosphoric Acid. J.
Am. Oil Chem. Soc. 84: 929-935.
5.
Jia, L.K., Gong, L.X., Ji, W.J. & Kan, C.Y. (2011).
Synthesis of vegetable oil based polyol with cottonseed oil and sorbitol
derived from natural source. Chinese Chem. Let. 22 (11): 1289-1292.
6.
Montero de Espinosa, L. & Meier, M.A.R. (2011). Plant
oils: The perfect renewable resource for polymer science European Polym. J. 47 (5):
837-852.
7.
Pfister, D.P., Xia, Y. & Larock, R.C. (2011). Recent
Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem. 4
(6): 703-717.
8.
Norzali, N.R.A., Badri, K.H. & Nuawi, M.Z. (2011). Effect
of Aluminum Hydroxide Loading on the Compression Stress and Modulus, Thermal
Conductivity and Acoustic Properties of Palm-Based Polyurethane Hybrid
Composite. Sains Malaysiana. 40 (4):
379-384.
9.
Badri, K.H., Othman, Z.B. & Razali, I.M. (2005).
Mechanical properties of poyurethane composites from oil palm resources. Iranian
Polym. J. 14 (5): 441-448.
10.
Chung, Y.-j., Kim, Y. & Kim, S. (2009). Flame retardant
properties of polyurethane produced by the addition of phosphorous containing
polyurethane oligomers (II). J. Ind. Eng. Chem. 15 (6): 888-893.
11.
Ashida, K., (2007). Polyurethane and Related Foams: Chemistry
and Technology. Taylor & Francis: New York.
12.
Liang, S., Neisius, M., Mispreuve, H., Naescher, R. &
Gaan, S. (2012). Flame retardancy and thermal decomposition of flexible polyurethane
foams: Structural influence of organophosphorus compounds. Polym. Deg. Stab. 97 (11): 2428-2440.
13.
Van der Veen, I. & De Boer, J. (2012). Phosphorus flame
retardants: Properties, production, environmental occurrence, toxicity and
analysis. Chemosphere. 88 (10):
1119-1153.
14.
Guo, Y., Mannari, V., Patel, P. & Massingill, J. (2006).
Self-emulsifiable soybean oil phosphate ester polyols for low-VOC corrosion
resistant coatings. J.
Coatings Tech. and Research. 3 (4):
327-331.
15.
Firdaus, F.E. (2011). Relationship od ReactionTemperature on
Phosphate Oligomers Reactivity to Properties of Soy-Poyurethane. World
Academy of Science, Engineering and Technology. 76: 230-234.
16.
Fan, H., Tekeei, A., Suppes, G.J. & Hsieh, F.-H. (2012).
Physical Properties of Soy-Phosphate Polyol-Based Rigid Polyurethane Foams. Int.
J. Polym. Sci. 2012: 1-8.
17.
Latere Dwan’Isa, J.-P., Mohanty, A.K., Misra, M., Drzal, L.T.
& Kazemizadeh, M. (2003). Novel Biobased Polyurethanes Synthesized from
Soybean Phosphate Ester Polyols: Thermomechanical Properties Evaluations. J. Polym. and the Environment. 11 (4): 161-168.
18.
Derawi, D. & Salimon, J. (2010). Optimization on
Epoxidation of Palm Olein by Using Performic Acid. e-Journal of Chemistry.
7 (4): 1440-1448.
19.
Pavia, D.L., Lampman, G.M. & Kriz, G.S., (2001).
Introduction to Spectroscopy. Brooks/Cole: California.
20.
Narine, S.S., Kong, X., Bouzidi, L. & Sporns, P. (2007).
Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: II.
Foams. J. Am. Oil Chem. Soc. 84:
66-72.
21.
Badri, K.H. & Redwan, A.M. (2010). Effect of Phosphite
Loading on the Mechanical and Fire Properties of Palm-Based Polyurethane. Sains
Malaysiana. 39 (5): 769-774.
22.
Zhang, L., Zhang, M., Hu, L. and Zhou, Y. 2014. Synthesis of
Rigid Polyurethane Foams with Castor Oil-based Flame Retardant Polyols. Industrial
Crops and Products. 52: 380-388.
23.
Pan, L.L., Li, G.Y., Su, Y.C. and Lian, J.S. 2012. Fire
retardant mechanism analysis between ammonium polyphosphate and triphenyl
phosphate in unsaturated polyester resin.
Polym Deg Stab. 97 (9): 1801-1806.
24.
Chattopadhyay, D.K. and Webster, D.C. 2009. Thermal stability
and flame retardancy of polyurethanes.
Prog. Polym. Sci. 34 (10): 1068-1133.
25.
Hörold, S. 1999. Phosphorus flame retardants in thermoset
resins. Polym. Deg. Stab. 64 (3):
427-431.
26.
Kuryla, W.C. and Papa, A.J. 1978. Flame Retardancy of
Polymeric Materials. Vol. 4. Marcel Dekker, Inc: New York
27.
Shih, Y.-F., Wang, Y.-T., Jeng, R.-J. and Wei, K.-M. 2004.
Expandable graphite systems for phosphorus-containing unsaturated polyesters.
I. Enhanced thermal properties and flame retardancy. Polym. Deg. Stab. 86
(2): 339-348.