Malaysian Journal
of Analytical Sciences Vol 18 No 2 (2014): 444 - 455
EFFECT OF DIFFERENT HEALING
TEMPERATURE ON SOLID STATE SELF-HEALING SYSTEM
(Kesan Suhu
Pemulihan Yang Berbeza Terhadap Sistem Swa-Pemulihan Dalam Keadaan Pepejal)
S. M. Makenan, N. N. Muhamad, M. J. Mohd Suzeren*,
S. Salihan, M.A.S. Mat Lazim
School
of Chemical Sciences and Food Technology,
Faculty
of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: suzeren@ukm.edu.my
Abstract
The aim of this
study is to identify the effect of using various healing temperatures ranging
from 120oC to 180oC with temperature interval of 100C
on self-healing resin system containing diglycidyl ether of bisphenol-A
(DGEBA), the hardener nadic methyl anhydride (NMA), the catalyst
benzylmethylamine (BDMA) and poly(bisphenol-A-co-epichlorohydrin) (PDGEBA) as
healing agent. The effects of different healing temperatures on the resin
systems were investigated by means of Fourier-transform Infrared Spectrometer
(FTIR), Dynamic Mechanical Thermal Analysis (DMTA), and izod test. Optical
image of the sample morphology was observed using optical microscope. Healing
efficiencies (HE) were evaluated using izod test and the
optimum healing temperature of 160oC was obtained within the third
healing cycles with HE 37%. The results indicate that the healing
temperature affected the physical aging and the chemical reaction between the
secondary hydroxyl group and carboxyl group occurred at high temperature of
≥180oC.
Keywords: Self-healing;
healing temperature; epoxy resin
Abstrak
Tujuan kajian ini
adalah untuk mengenalpasti kesan menggunakan suhu pemulihan yang berbeza iaitu
120oC, 140oC, 150oC, 160oC, 170oC
dan 180oC terhadap sistem swa-pemulihan resin yang mengandungi
diglisidil eter bisfenol-A (DGEBA), pengeras nadik metil anhidrida (NMA),
pemangkin benzilmetilamina (BDMA) dan poli(bisfenol-A-ko-epiklorohidrin)
(PDGEBA) sebagai agen pemulihan. Kesan penggunaan suhu pemulihan yang berbeza
terhadap sistem resin dikaji menggunakan Spektrometer Infra Merah
Fourier-transform (FTIR), Analisis Terma Mekanikal Analisis (DMTA), ujian izod
dan mikroskop optik. Keberkesanan pemulihan (HE) diukur menggunakan
ujian izod dan suhu pemulihan terbaik
pada 160oC didapati di kitaran pemulihan yang ketiga dengan nilai HE
sebanyak 37% . Keputusan ini menunjukkan bahawa suhu pemulihan menyebabkan
berlaku penuaan fizikal dan tindak balas kimia antara kumpulan hidroksil
sekunder dan kumpulan karboksil berlaku pada suhu yang tinggi sekitar
≥180oC.
Kata kunci: Swa-pemulihan;
suhu pemulihan; resin epoksi
References
1.
Dry, C. (1996). Procedures developed for self-repair of
polymer matrix composite materials. Composite
Structures, 35(3): 263-269.
2. Kim, V. T. & Nele, D. B.
(2013). Self-Healing in Cementitious Materials—A Review Materials, 6: 2182-2217.
3. Colquhoun, H. &
Klumperman, B. (2013). Self-healing polymers. Polymer Chemistry, 4(18): 4832-4833.
4. Tyagi, P., Deratani, A.,
& Quemener, D. (2013). Self-Healing Dynamic Polymeric Systems. Israel Journal of Chemistry, 53(1-2):
53-60.
5. Billiet, S., Van Camp, W.,
Hillewaere, X. K. D., Rahier, H., & Du Prez, F. E. (2012). Development of
optimized autonomous self-healing systems for epoxy materials based on
maleimide chemistry. Polymer, 53(12):
2320-2326.
6. White, S. R., Sottos, N. R.,
Geubelle, P. H., J.S.Moore, Kessler, M. R., Sriram, S. R., Brown, E. N., &
Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409: 794-797.
7. Blaiszik, B. J., Kramer, S.
L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., & White, S. R.
(2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40(1): 179-211.
8. Williams, K. A., Dreyer, D.
R., & Bielawski, C. W. (2008). The Underlying Chemistry of Self-Healing
Materials. MRS Bulletin, 33: 759-765.
9. Hayes, S. A., Jones, F. R.,
Marshiya, K., & zhang, W. (2007). A self-healing thermosetting composite
material. Composites Part A: Applied
Science and Manufacturing, 38(4): 1116-1120.
10. Hayes, S. A., Zhang, W.,
Branthwaite, M., & Jones, F. R. (2007b). Self-healing of damage in
fibre-reinforced polymer-matrix composites. Journal
of The Royal Society Interface, 4(13): 381-387.
11. Peterson, A. M.,
Kotthapalli, H., Rahmathullah, M. A. M., & Palmese, G. R. (2012).
Investigation of interpenetrating polymer networks for self-healing
applications. Composites Science and
Technology, 72(2): 330-336.
12. Wool, R. P. & O'Connor,
K. M. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52(10): 5953-5963.
13. de Gennes, P. G., Scaling Concepts in Polymer Physics.
1979, Ithaca, New York: Cornell Univ. Press.
14. Jud, K. & Kausch, H. H.
(1979). Load transfer through chain molecules after interpenetration at
interfaces. Polymer Bulletin, 1:
697-707.
15. Diana, D., philipp, M.,
& Wolfgang, B., eds. Principles of
Self-Healing Polymers, In: Self Healing Polymers : From Principles to
Applications Self-Healing Polymers. 2013, Wiley-VCH Verlag GmbH & Co.
KGaA.: USA. 5-60.
16. Kong, E.,(1986). Physical aging in epoxy matrices and
composites Epoxy Resins and Composites IV, Dušek, K., Editor, Springer
Berlin / Heidelberg. p. 125-171.
17. Lévêque, D., Schieffer, A.,
Mavel, A., & Maire, J.-F. (2005). Analysis of how thermal aging affects the
long-term mechanical behavior and strength of polymer–matrix composites. Composites Science and Technology, 65(3–4):
395-401.
18. Hu, H. & Sun, C. T.
(2000). The characterization of physical aging in polymeric composites. Composites Science and Technology, 60(14):
2693-2698.
19. Brown, E. N., White, S. R.,
& Sottos, N. R. (2005). Retardation and repair of fatigue cracks in a
microcapsule toughened epoxy composite – Part I: Manual infiltration. Composites Science and Technology, 65(15–16):
2466-2473.
20. Fox, T. G. & Flory, P.
J. (1950). Second-order transition temperatures and related properties of
polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 21(6): 581.
21. Jones, F. R., Zhang, W.,
& Hayes, S. A. ( 2007). Thermally induced self healing of thermosetting
resins and matrices in smart composites.
Self Healing Materials, 100: 69-93.
22. Rahmathullah, M. A. M. &
Giuseppe, R. P. (2009). Crack-healing behavior of epoxy-amine thermosets. Applied Polymer Science, 113(4):
2191-2201.
23. Hutchinson, J. M. (1995).
Physical aging of polymers. Progress in
Polymer Science, 20(4): 703-760.
24. Miura, K. (1998). A new
method to estimate hydrogen bondings in coal by utilizing FTIR and DSC. Fuel and Energy Abstracts, 39(3):
167-167.
25. Kausch, H. H. & Tirrell,
M. (1989). Polymer interdiffusion. Annual
Review of Materials Science, 19(1): 341-77.
26. Cook, W., Mehrabi, M., &
Edward, G. (1999). Ageing and yielding in model epoxy thermosets. Polymer, 40(5): 1209-1218.
27. Barral, L., Cano, J., Lopez,
J., Lopez-Bueno, I., Nogueira, P., Abad, M. J., & Ramirez, C. (1999).
Physical aging of an epoxy/cycloaliphatic amine resin. European Polymer Journal, 35(3): 403-411.
28. Thomas, R., Durix, S.,
Sinturel, C., Omonov, T., Goossens, S., Groeninckx, G., Moldenaers, P., &
Thomas, S. (2007). Cure kinetics, morphology and miscibility of modified
DGEBA-based epoxy resin – Effects of a liquid rubber inclusion. Polymer, 48(6): 1695-1710.