Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 444 - 455

 

 

 

EFFECT OF DIFFERENT HEALING TEMPERATURE ON SOLID STATE SELF-HEALING SYSTEM

 

(Kesan Suhu Pemulihan Yang Berbeza Terhadap Sistem Swa-Pemulihan Dalam Keadaan Pepejal)

 

S. M. Makenan, N. N. Muhamad, M. J. Mohd Suzeren*, S. Salihan, M.A.S. Mat Lazim

 

School of Chemical Sciences and Food Technology,

Faculty of  Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: suzeren@ukm.edu.my

 

 

Abstract

The aim of this study is to identify the effect of using various healing temperatures ranging from 120oC to 180oC with temperature interval of 100C on self-healing resin system containing diglycidyl ether of bisphenol-A (DGEBA), the hardener nadic methyl anhydride (NMA), the catalyst benzylmethylamine (BDMA) and poly(bisphenol-A-co-epichlorohydrin) (PDGEBA) as healing agent. The effects of different healing temperatures on the resin systems were investigated by means of Fourier-transform Infrared Spectrometer (FTIR), Dynamic Mechanical Thermal Analysis (DMTA), and izod test. Optical image of the sample morphology was observed using optical microscope. Healing efficiencies (HE) were evaluated using izod test and the optimum healing temperature of 160oC was obtained within the third healing cycles with HE 37%. The results indicate that the healing temperature affected the physical aging and the chemical reaction between the secondary hydroxyl group and carboxyl group occurred at high temperature of ≥180oC.

 

Keywords: Self-healing; healing temperature; epoxy resin

 

Abstrak

Tujuan kajian ini adalah untuk mengenalpasti kesan menggunakan suhu pemulihan yang berbeza iaitu 120oC, 140oC, 150oC, 160oC, 170oC dan 180oC terhadap sistem swa-pemulihan resin yang mengandungi diglisidil eter bisfenol-A (DGEBA), pengeras nadik metil anhidrida (NMA), pemangkin benzilmetilamina (BDMA) dan poli(bisfenol-A-ko-epiklorohidrin) (PDGEBA) sebagai agen pemulihan. Kesan penggunaan suhu pemulihan yang berbeza terhadap sistem resin dikaji menggunakan Spektrometer Infra Merah Fourier-transform (FTIR), Analisis Terma Mekanikal Analisis (DMTA), ujian izod dan mikroskop optik. Keberkesanan pemulihan (HE) diukur menggunakan ujian izod dan suhu pemulihan  terbaik pada 160oC didapati di kitaran pemulihan yang ketiga dengan nilai HE sebanyak 37% . Keputusan ini menunjukkan bahawa suhu pemulihan menyebabkan berlaku penuaan fizikal dan tindak balas kimia antara kumpulan hidroksil sekunder dan kumpulan karboksil berlaku pada suhu yang tinggi sekitar ≥180oC.

 

Kata kunci: Swa-pemulihan; suhu pemulihan; resin epoksi

 

References

1.       Dry, C. (1996). Procedures developed for self-repair of polymer matrix composite materials. Composite Structures, 35(3): 263-269.

2.       Kim, V. T. & Nele, D. B. (2013). Self-Healing in Cementitious Materials—A Review Materials, 6: 2182-2217.

3.       Colquhoun, H. & Klumperman, B. (2013). Self-healing polymers. Polymer Chemistry, 4(18): 4832-4833.

4.       Tyagi, P., Deratani, A., & Quemener, D. (2013). Self-Healing Dynamic Polymeric Systems. Israel Journal of Chemistry, 53(1-2): 53-60.

5.       Billiet, S., Van Camp, W., Hillewaere, X. K. D., Rahier, H., & Du Prez, F. E. (2012). Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry. Polymer, 53(12): 2320-2326.

6.       White, S. R., Sottos, N. R., Geubelle, P. H., J.S.Moore, Kessler, M. R., Sriram, S. R., Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409: 794-797.

7.       Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., & White, S. R. (2010). Self-Healing Polymers and Composites. Annual Review of Materials Research, 40(1): 179-211.

8.       Williams, K. A., Dreyer, D. R., & Bielawski, C. W. (2008). The Underlying Chemistry of Self-Healing Materials. MRS Bulletin, 33: 759-765.

9.       Hayes, S. A., Jones, F. R., Marshiya, K., & zhang, W. (2007). A self-healing thermosetting composite material. Composites Part A: Applied Science and Manufacturing, 38(4): 1116-1120.

10.    Hayes, S. A., Zhang, W., Branthwaite, M., & Jones, F. R. (2007b). Self-healing of damage in fibre-reinforced polymer-matrix composites. Journal of The Royal Society Interface, 4(13): 381-387.

11.    Peterson, A. M., Kotthapalli, H., Rahmathullah, M. A. M., & Palmese, G. R. (2012). Investigation of interpenetrating polymer networks for self-healing applications. Composites Science and Technology, 72(2): 330-336.

12.    Wool, R. P. & O'Connor, K. M. (1981). A theory crack healing in polymers. Journal of Applied Physics, 52(10): 5953-5963.

13.    de Gennes, P. G., Scaling Concepts in Polymer Physics. 1979, Ithaca, New York: Cornell Univ. Press.

14.    Jud, K. & Kausch, H. H. (1979). Load transfer through chain molecules after interpenetration at interfaces. Polymer Bulletin, 1: 697-707.

15.    Diana, D., philipp, M., & Wolfgang, B., eds. Principles of Self-Healing Polymers, In: Self Healing Polymers : From Principles to Applications Self-Healing Polymers. 2013, Wiley-VCH Verlag GmbH & Co. KGaA.: USA. 5-60.

16.    Kong, E.,(1986). Physical aging in epoxy matrices and composites Epoxy Resins and Composites IV, Dušek, K., Editor, Springer Berlin / Heidelberg. p. 125-171.

17.    Lévêque, D., Schieffer, A., Mavel, A., & Maire, J.-F. (2005). Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer–matrix composites. Composites Science and Technology, 65(3–4): 395-401.

18.    Hu, H. & Sun, C. T. (2000). The characterization of physical aging in polymeric composites. Composites Science and Technology, 60(14): 2693-2698.

19.    Brown, E. N., White, S. R., & Sottos, N. R. (2005). Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part I: Manual infiltration. Composites Science and Technology, 65(15–16): 2466-2473.

20.    Fox, T. G. & Flory, P. J. (1950). Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 21(6): 581.

21.    Jones, F. R., Zhang, W., & Hayes, S. A. ( 2007). Thermally induced self healing of thermosetting resins and matrices in smart composites. Self Healing Materials, 100: 69-93.

22.    Rahmathullah, M. A. M. & Giuseppe, R. P. (2009). Crack-healing behavior of epoxy-amine thermosets. Applied Polymer Science, 113(4): 2191-2201.

23.    Hutchinson, J. M. (1995). Physical aging of polymers. Progress in Polymer Science, 20(4): 703-760.

24.    Miura, K. (1998). A new method to estimate hydrogen bondings in coal by utilizing FTIR and DSC. Fuel and Energy Abstracts, 39(3): 167-167.

25.    Kausch, H. H. & Tirrell, M. (1989). Polymer interdiffusion. Annual Review of Materials Science, 19(1): 341-77.

26.    Cook, W., Mehrabi, M., & Edward, G. (1999). Ageing and yielding in model epoxy thermosets. Polymer, 40(5): 1209-1218.

27.    Barral, L., Cano, J., Lopez, J., Lopez-Bueno, I., Nogueira, P., Abad, M. J., & Ramirez, C. (1999). Physical aging of an epoxy/cycloaliphatic amine resin. European Polymer Journal, 35(3): 403-411.

28.    Thomas, R., Durix, S., Sinturel, C., Omonov, T., Goossens, S., Groeninckx, G., Moldenaers, P., & Thomas, S. (2007). Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin – Effects of a liquid rubber inclusion. Polymer, 48(6): 1695-1710.

 

 

Previous                    Content                    Next