Malaysian Journal of Analytical Sciences Vol 18 No 2 (2014): 466 - 477

 

 

 

THERMAL PROPERTIES, STRUCTURE AND MORPHOLOGY OF GRAPHENE REINFORCED POLYETHYLENE TEREPHTHALATE/POLYPROPYLENE NANOCOMPOSITES

 

(Sifat Termal, Struktur dan Morfologi Graphene Bertetulang Polietilena Tereftalat /Polipropilena)

 

I. M. Inuwa, A.  Hassan*, S. A. Shamsudin

 

Department of Polymer Engineering,

Faculty of Chemical and Natural Resources Engineering,

Universiti Teknologi Malaysia, UTM 81310, Skudai, Johor Darul Takzim, Malaysia

 

*Corresponding author: azmanh@cheme.utm.my

 

 

Abstract

In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nanoplatelets (GNP) were investigated. A blend of PET/PP (70/30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nanocomposites increased as a function of the GNP concentration. More than 80% increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix... It is explained that the GNP nanofillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers.

 

Keywords: Thermal conductivity, thermal stability, polyethylene terephthalate, polypropylene, graphene nanoplatelets

 

Abstrak

Dalam kajian ini, sifat haba, struktur dan morfologi adunan polietilena tereftalat (PET) dan polipropilena (PP)  diperkukuhkan dengan nanoplatlet grafit berkelupasan (GNP) telah dikaji.  Adunan PET / PP (70/30 peratus berat) diserasikan dengan kopolimer triblok maleat anhidrida tercangkuk stirena-etilena-butilena-stirena (10 phr) telah dipalsukan oleh proses penyemperitan mencairkan dalam ekstruder skru berkembar. Keberaliran haba berkesan daripada nanokomposit meningkat sebagai fungsi kepekatan GNP. Peningkatan lebih daripada 80% dalam kekonduksian terma berkesan diperhatikan untuk sampel diperkukuhkan 7 phr berbanding dengan gabungan kemas. Pemerhatian ini disebabkan oleh pembangunan saling kunci GNP yang membentuk jambatan haba konduktif yang sesuai untuk pemindahan haba maksimum. Walau bagaimanapun, dalam kes kestabilan terma yang merupakan fungsi penyerakan GNP dalam matriks polimer, peningkatan maksimum diperhatikan pada kandungan 3 phr GNP  yang boleh dikaitkan dengan penyebaran seragam GNPs dalam matriks.  Ia menjelaskan bahawa yang pengisi nano GNP berhijrah ke permukaan matriks membentuk halangan oksigen yang berkesan kerana pembentukan char. Kajian morfologi mendedahkan penyebaran seragam graphene dalam matriks polimer pada kandungan 3 phr GNP  bersama-sama dengan kes terpencil pengelupasan lapisan graphene.

 

Kata kunci: kekonduksian terma, kestabilan terma, polietilena tereftalat, polipropilena, nanoplatlet graphene

 

References

1.       Emory, K. (2013). The eco-friendly car is driving engineering plastics market to $76 billion by 2017.   Retrieved 12 January, 2014, from http://www.tgdaily.com/general-sciences-features/78573-the-eco-friendly-car-is-driving-engineering-plastics-market-to-76-bi#VRkDTSm6J5LpjbcK.99

2.       Bartolome, L., Imran, M. and Cho,B.G. (2012). Recent Developments in the Chemical Recycling of PET in Material Recycling – Trends and Perspectives. ed. Achilias. D. S.  65-84.

3.       Abdul Razak, N. C., Inuwa, I. M., Hassan, A. & Samsudin, S. A. (2013). Effects of compatibilizers on mechanical properties of PET/PP blend. Compos. Interfaces, 20 (7): 507-515.

4.       Liu, X.G. (2013). How will carbon material lead to a Low Carbon Society – A review of Carbon 2012. Carbon, 51: 438.

5.       Hussain, F. H., Mehdi O., Masami Gorga, & Russell E. (2006). Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater., 40 (17): 1511-1575.

6.       Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nat Mater, 6 (3): 183-191.

7.       Lee, C. W., Xiaoding K., Jeffrey W. & Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321 (5887): 385-388.

8.       Zhang, Y. A., Dervishi, S. F., Xu, E., Li, Y., Casciano, Z. & Biris, D. A. S. (2010). Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 4: 3181.

9.       Balandin, A. A., Ghosh, S.B., Wenzhong, C., Teweldebrhan, I., Miao, D., Lau, F. & Ning, C. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 8 (3): 902-907.

10.    Kuila, T. B., Saswata, K., Partha, K., Nam, H. R., Kyong, Y. L., & Joong, H. (2011). Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Composites Part A, 42 (11): 1856-1861.

11.    Kuila, T. B., Saswata, K., Partha, K., Nam, H. R., Kyong, Y. L., & Joong, H. (2012). Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym. Test., 31 (1): 31-38.

12.    Zhao, X. Z., Qinghua, C. & Dajun, L. (2010). Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules, 43 (5): 2357-2363.

13.    Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z. & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 3: 3884.

14.    Haafiz, M. K., Hassan, A., Zakaria, Z. & Inuwa, I. M. (2014). Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr. Polym., 103: 119-125.

15.    Bandla, S. & Hanan, J. C. Manufacturing tough amorphous thermoplastic-graphene nanocomposites. in Nanotechnology 2012: Advanced Materials, CNTs, Particles, Films and Composites - 2012 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2012. 2012. Santa Clara, CA.

16.    Prusty, G. S. & Sarat K. (2013). Dispersion of expanded graphite as nanoplatelets in a copolymer matrix and its effect on thermal stability, electrical conductivity and permeability. Carbon, 51: 436.

17.    Teng, C. C. M., Chen-Chi, M. L., Chu-Hua, Y., Shin-Yi, L., Shie-Heng, H., Min-Chien, Y., Ming-Yu, C., Kuo-Chan, L. & Tzong, M. (2011). Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon, 49 (15): 5107-5116.

18.    Jiang, X. D. & Lawrence, T. (2012). Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates. J. Power Sources, 218: 297-306.

19.    Yu, S., Jeong, S.G., Chung, O. & Kim, S. (2014). Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells, 120, Part B: 549-554.

20.    Min, C. Y., Demei, C., Jingyu, W. & Lihua, G.F. (2013). A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 55: 116-125.

21.    Han, Z. & Alberto, F. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci., 36 (7): 914-944.

22.    Li, W., Schlarb, A. K. & Evstatiev, M. (2009). Study of PET/PP/TiO2 microfibrillar-structured composites, part 1: Preparation, morphology, and Dynamic mechanical analysis of fibrillized blends. J. Appl. Polym. Sci., 113 (3): 1471-1479.

23.    Chu, K., Li., W.S., Jia, C. C. & Tang, F. L. (2012). Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl. Phys. Lett., 101 (21).

24.    Huang, X., Zhi, C. & Jiang, P. (2012). Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. J. Phys. Chem. C, 116 (44): 23812-23820.

25.    Verdejo, R., Bernal, M., Mar, R., Laura, J., Manchado, L. & Miguel A. (2011). Graphene filled polymer nanocomposites. J. Mater. Chem., 21 (10): 3301-3310.

26.    Wakabayashi, K., Brunner, P. J., Masuda, J., H., Sheldon A., & Torkelson, J. M. (2010). Polypropylene-graphite nanocomposites made by solid-state shear pulverization: Effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties. Polymer, 51 (23): 5525-5531.

27.    Heino, M., Kirjava, J., Hietaoja, P. & Seppala, J. (1997). Compatibilization of polyethylene terephthalate/polypropylene blends with styrene-ethylene/butylene-styrene (SEBS) block copolymers. J. Appl. Polym. Sci., 65 (2): 241-249.

28.    Ramanathan T., Stankovich S., Dikin  D. A., Liu, H. Shen, H. Nguyen S. T., Brinson, L. C. (2007). Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci., Part B: Polym. Phys., 45 (15): 2097-2112.

29.    Zhang, J. G. & Deng J. (2011). Effect Of SEBS- g -MA on wear friction of PA6-CNT composite. Polym-Plast Technol, 50: 1533–1536.

30.    Ramanathan, T. Abdala, A. A. Stankovich, S. Dikin, D. A. Herrera-Alonso, M. Piner, R. D. Adamson, D. H. Schniepp, H. C. Chen, X. Ruoff, R. S. Nguyen, S. T. Aksay, I. A. nPrud'homme, R. K. & Brinson, L. C. (2008). Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol., 3 (6): 327-331.

31.    Lim, S. R. & Chow, W. S. (2012). Impact, thermal, and morphological properties of functionalized rubber toughened-poly(ethylene terephthalate) nanocomposites. J. Appl. Polym. Sci., 123 (5): 3173-3181.

32.    Li, M., & Jeong, Y. G. (2011). Poly(ethylene terephthalate)/exfoliated graphite nanocomposites with improved thermal stability, mechanical and electrical properties. Composites Part A, 42 (5): 560-566.

33.    Tantis, I., Psarras, G. C. & Tasis. D. (2012). Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. Express Polym Lett, 6 (4): 283 -292.

34.    Akbari, M. Zadhoush, A. Haghighat, M. (2007). PET/PP blending by using PP-g-MA synthesized by solid phase. J. Appl. Polym. Sci., 104 (6): 3986-3993.

35.    Karevan, M., Eshraghi, S., Gerhardt, R., Das, S., & Kalaitzidou, K. (2013). Effect of processing method on the properties of multifunctional exfoliated graphite nanoplatelets/polyamide 12 composites. Carbon, 64: 122-131.

36.    Bandla, S. & Hanan, J. (2012). Microstructure and elastic tensile behavior of polyethylene terephthalate-exfoliated graphene nanocomposites. J. Mater. Sci., 47 (2): 876-882.

 

 

Previous                    Content                    Next