Malaysian Journal of Analytical Sciences Vol 18 No 2
(2014): 466 - 477
THERMAL PROPERTIES,
STRUCTURE AND MORPHOLOGY OF GRAPHENE REINFORCED POLYETHYLENE
TEREPHTHALATE/POLYPROPYLENE NANOCOMPOSITES
(Sifat Termal,
Struktur dan Morfologi Graphene Bertetulang Polietilena Tereftalat
/Polipropilena)
I. M. Inuwa, A. Hassan*, S. A. Shamsudin
Department
of Polymer Engineering,
Faculty
of Chemical and Natural Resources Engineering,
Universiti
Teknologi Malaysia, UTM 81310, Skudai, Johor Darul Takzim, Malaysia
*Corresponding author: azmanh@cheme.utm.my
Abstract
In
this work the thermal properties, structure and morphology of a blend of
polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene
nanoplatelets (GNP) were investigated. A blend of PET/PP (70/30 weight percent)
compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock
copolymer (10 phr) were fabricated by melt extrusion process in a twin screw
extruder. The effective thermal conductivity of the nanocomposites increased as
a function of the GNP concentration. More than 80% increase in effective
thermal conductivity was observed for the 7 phr reinforced sample compared to
the neat blend. This observation was attributed to the development
interconnected GNP sheets which formed heat conductive bridges that are
suitable for maximum heat transfer. However, in the case of thermal stability
which is a function of dispersibility of GNP in polymer matrix, the maximum
increase was observed at 3 phr GNP loading which could be attributed to the uniform
dispersion of GNPs in the matrix... It is explained that the GNP nanofillers
migrated to the surface of matrix forming an effective oxygen barrier due to
char formation. Morphological studies revealed uniform dispersion graphene in
the polymer matrix at 3 phr GNP loading along with isolated instances of
exfoliation of the graphene layers.
Keywords: Thermal
conductivity, thermal stability, polyethylene terephthalate, polypropylene,
graphene nanoplatelets
Abstrak
Dalam
kajian ini, sifat haba, struktur dan morfologi adunan polietilena tereftalat
(PET) dan polipropilena (PP)
diperkukuhkan dengan nanoplatlet grafit berkelupasan (GNP) telah dikaji. Adunan PET / PP (70/30 peratus berat)
diserasikan dengan kopolimer triblok maleat anhidrida tercangkuk
stirena-etilena-butilena-stirena (10 phr) telah dipalsukan oleh proses
penyemperitan mencairkan dalam ekstruder skru berkembar. Keberaliran haba
berkesan daripada nanokomposit meningkat sebagai fungsi kepekatan GNP.
Peningkatan lebih daripada 80% dalam kekonduksian terma berkesan diperhatikan
untuk sampel diperkukuhkan 7 phr berbanding dengan gabungan kemas. Pemerhatian
ini disebabkan oleh pembangunan saling kunci GNP yang membentuk jambatan haba
konduktif yang sesuai untuk pemindahan haba maksimum. Walau bagaimanapun, dalam
kes kestabilan terma yang merupakan fungsi penyerakan GNP dalam matriks
polimer, peningkatan maksimum diperhatikan pada kandungan 3 phr GNP yang boleh dikaitkan dengan penyebaran
seragam GNPs dalam matriks. Ia
menjelaskan bahawa yang pengisi nano GNP berhijrah ke permukaan matriks
membentuk halangan oksigen yang berkesan kerana pembentukan char. Kajian
morfologi mendedahkan penyebaran seragam graphene dalam matriks polimer pada
kandungan 3 phr GNP bersama-sama dengan
kes terpencil pengelupasan lapisan graphene.
Kata
kunci:
kekonduksian terma, kestabilan terma, polietilena tereftalat, polipropilena, nanoplatlet
graphene
References
1.
Emory,
K. (2013). The eco-friendly car is driving engineering plastics market to $76
billion by 2017. Retrieved 12 January,
2014, from http://www.tgdaily.com/general-sciences-features/78573-the-eco-friendly-car-is-driving-engineering-plastics-market-to-76-bi#VRkDTSm6J5LpjbcK.99
2.
Bartolome,
L., Imran, M. and Cho,B.G. (2012). Recent Developments in the Chemical
Recycling of PET in Material Recycling – Trends and Perspectives. ed. Achilias.
D. S. 65-84.
3.
Abdul
Razak, N. C., Inuwa, I. M., Hassan, A. & Samsudin, S. A. (2013). Effects of
compatibilizers on mechanical properties of PET/PP blend. Compos. Interfaces, 20 (7): 507-515.
4.
Liu,
X.G. (2013). How will carbon material lead to a Low Carbon Society – A review
of Carbon 2012. Carbon, 51: 438.
5.
Hussain,
F. H., Mehdi O., Masami Gorga, & Russell E. (2006). Review article:
Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An
Overview. J. Compos. Mater., 40 (17):
1511-1575.
6.
Geim,
A. K., & Novoselov, K. S. (2007). The rise of graphene. Nat Mater, 6 (3): 183-191.
7.
Lee,
C. W., Xiaoding K., Jeffrey W. & Hone, J. (2008). Measurement of the
Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321 (5887): 385-388.
8.
Zhang,
Y. A., Dervishi, S. F., Xu, E., Li, Y., Casciano, Z. & Biris, D. A. S.
(2010). Cytotoxicity effects of graphene and single-wall carbon nanotubes in
neural phaeochromocytoma-derived PC12 cells. ACS Nano, 4: 3181.
9.
Balandin,
A. A., Ghosh, S.B., Wenzhong, C., Teweldebrhan, I., Miao, D., Lau, F. & Ning,
C. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett., 8 (3): 902-907.
10.
Kuila,
T. B., Saswata, K., Partha, K., Nam, H. R., Kyong, Y. L., & Joong, H.
(2011). Characterization and properties of in situ emulsion polymerized poly(methyl
methacrylate)/graphene nanocomposites. Composites
Part A, 42 (11): 1856-1861.
11.
Kuila,
T. B., Saswata, K., Partha, K., Nam, H. R., Kyong, Y. L., & Joong, H.
(2012). Effect of functionalized graphene on the physical properties of linear
low density polyethylene nanocomposites. Polym.
Test., 31 (1): 31-38.
12.
Zhao,
X. Z., Qinghua, C. & Dajun, L. (2010). Enhanced Mechanical Properties of
Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules, 43 (5): 2357-2363.
13.
Rafiee,
M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z. & Koratkar, N. (2009). Enhanced
mechanical properties of nanocomposites at low graphene content. ACS Nano, 3: 3884.
14.
Haafiz,
M. K., Hassan, A., Zakaria, Z. & Inuwa, I. M. (2014). Isolation and
characterization of cellulose nanowhiskers from oil palm biomass
microcrystalline cellulose. Carbohydr.
Polym., 103: 119-125.
15.
Bandla,
S. & Hanan, J. C. Manufacturing tough amorphous thermoplastic-graphene
nanocomposites. in Nanotechnology 2012: Advanced Materials, CNTs, Particles,
Films and Composites - 2012 NSTI Nanotechnology Conference and Expo,
NSTI-Nanotech 2012. 2012. Santa Clara, CA.
16.
Prusty,
G. S. & Sarat K. (2013). Dispersion of expanded graphite as nanoplatelets
in a copolymer matrix and its effect on thermal stability, electrical conductivity
and permeability. Carbon, 51: 436.
17.
Teng,
C. C. M., Chen-Chi, M. L., Chu-Hua, Y., Shin-Yi, L., Shie-Heng, H., Min-Chien,
Y., Ming-Yu, C., Kuo-Chan, L. & Tzong, M. (2011). Thermal conductivity and
structure of non-covalent functionalized graphene/epoxy composites. Carbon, 49 (15): 5107-5116.
18.
Jiang,
X. D. & Lawrence, T. (2012). Exploring the potential of exfoliated graphene
nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar
plates. J. Power Sources, 218:
297-306.
19.
Yu,
S., Jeong, S.G., Chung, O. & Kim, S. (2014). Bio-based PCM/carbon
nanomaterials composites with enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells, 120, Part
B: 549-554.
20.
Min,
C. Y., Demei, C., Jingyu, W. & Lihua, G.F. (2013). A graphite
nanoplatelet/epoxy composite with high dielectric constant and high thermal
conductivity. Carbon, 55: 116-125.
21.
Han,
Z. & Alberto, F. (2011). Thermal conductivity of carbon nanotubes and their
polymer nanocomposites: A review. Prog.
Polym. Sci., 36 (7): 914-944.
22.
Li,
W., Schlarb, A. K. & Evstatiev, M. (2009). Study of PET/PP/TiO2
microfibrillar-structured composites, part 1: Preparation, morphology, and
Dynamic mechanical analysis of fibrillized blends. J. Appl. Polym. Sci., 113 (3): 1471-1479.
23.
Chu,
K., Li., W.S., Jia, C. C. & Tang, F. L. (2012). Thermal conductivity of
composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl. Phys. Lett., 101 (21).
24.
Huang,
X., Zhi, C. & Jiang, P. (2012). Toward effective synergetic effects from
graphene nanoplatelets and carbon nanotubes on thermal conductivity of
ultrahigh volume fraction nanocarbon epoxy composites. J. Phys. Chem. C, 116 (44): 23812-23820.
25.
Verdejo,
R., Bernal, M., Mar, R., Laura, J., Manchado, L. & Miguel A. (2011).
Graphene filled polymer nanocomposites.
J. Mater. Chem., 21 (10): 3301-3310.
26.
Wakabayashi,
K., Brunner, P. J., Masuda, J., H., Sheldon A., & Torkelson, J. M. (2010).
Polypropylene-graphite nanocomposites made by solid-state shear pulverization:
Effects of significantly exfoliated, unmodified graphite content on physical,
mechanical and electrical properties. Polymer,
51 (23): 5525-5531.
27.
Heino,
M., Kirjava, J., Hietaoja, P. & Seppala, J. (1997). Compatibilization of
polyethylene terephthalate/polypropylene blends with
styrene-ethylene/butylene-styrene (SEBS) block copolymers. J. Appl. Polym. Sci., 65 (2): 241-249.
28.
Ramanathan
T., Stankovich S., Dikin D. A., Liu, H.
Shen, H. Nguyen S. T., Brinson, L. C. (2007). Graphitic nanofillers in PMMA
nanocomposites—An investigation of particle size and dispersion and their
influence on nanocomposite properties. J.
Polym. Sci., Part B: Polym. Phys., 45 (15): 2097-2112.
29.
Zhang,
J. G. & Deng J. (2011). Effect Of SEBS- g -MA on wear friction of PA6-CNT
composite. Polym-Plast Technol, 50:
1533–1536.
30.
Ramanathan,
T. Abdala, A. A. Stankovich, S. Dikin, D. A. Herrera-Alonso, M. Piner, R. D.
Adamson, D. H. Schniepp, H. C. Chen, X. Ruoff, R. S. Nguyen, S. T. Aksay, I. A.
nPrud'homme, R. K. & Brinson, L. C. (2008). Functionalized graphene sheets
for polymer nanocomposites. Nat.
Nanotechnol., 3 (6): 327-331.
31.
Lim,
S. R. & Chow, W. S. (2012). Impact, thermal, and morphological properties
of functionalized rubber toughened-poly(ethylene terephthalate) nanocomposites.
J. Appl. Polym. Sci., 123 (5):
3173-3181.
32.
Li,
M., & Jeong, Y. G. (2011). Poly(ethylene terephthalate)/exfoliated graphite
nanocomposites with improved thermal stability, mechanical and electrical
properties. Composites Part A, 42
(5): 560-566.
33.
Tantis,
I., Psarras, G. C. & Tasis. D. (2012). Functionalized graphene – poly(vinyl
alcohol) nanocomposites: Physical and dielectric properties. Express Polym Lett, 6 (4): 283 -292.
34.
Akbari,
M. Zadhoush, A. Haghighat, M. (2007). PET/PP blending by using PP-g-MA
synthesized by solid phase. J. Appl.
Polym. Sci., 104 (6): 3986-3993.
35.
Karevan,
M., Eshraghi, S., Gerhardt, R., Das, S., & Kalaitzidou, K. (2013). Effect
of processing method on the properties of multifunctional exfoliated graphite
nanoplatelets/polyamide 12 composites. Carbon,
64: 122-131.
36.
Bandla,
S. & Hanan, J. (2012). Microstructure and elastic tensile behavior of
polyethylene terephthalate-exfoliated graphene nanocomposites. J. Mater. Sci., 47 (2): 876-882.