The Malaysian Journal of Analytical Sciences Vol 17 No 1 (2013): 119 – 128

 

 

 

THE EFFECT OF CHEMICAL STRUCTURE ON POUR POINT, OXIDATIVE STABILITY AND TRIBOLOGICAL PROPERTIES OF OLEIC ACID TRIESTER DERIVATIVES

 

(Kesan Struktur Kimia Pada Titik Pour, Kestabilan Pengoksidaan Dan Sifat Tribological Derivatif Triester Asid Oleik)

 

Nadia Salih1, Jumat Salimon1*, Emad Yousif2

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Department of Chemistry, College of Science,

Al-Nahrain University, Baghdad, Iraq

 

*Corresponding author: jumat@ukm.my

 

 

Abstract

Due to the strict regulations imposed on non-biodegradable mineral oil-based lubricants, the development and applications of biolubricants are increasing daily. Plant oils are being investigated as a potential source of environmentally favorable lubricants because of their biodegradability, renewability, viscosity-temperature relationship, low volatility and excellent lubrication performance. However, the use of plant oils has some restriction, the most critical being oxidative stability and low-temperature problems. This paper presents systematic modifications to improve the physicochemical and tribological properties of plant oil derivatives. The results showed that among the oleic acid-based triester compounds, 2-ethylhexyl 9-(myristoxy)-10-(heptanoyloxy)octadecanoate (9) had the lowest pour point (-47.19 ˚C) while 2-ethylhexyl 9-(caprooxy)-10-(heptanoyloxy)octadecanoate (5) had the highest onset temperature (103.10 ˚C). Overall, the data indicate that the biolubricant basestocks based on this chemical modification offer great potential for the development of industrial products application.

 

Keywords: Plant oils, pour point, physicochemical properties, biolubricant basestocks 

 

References

1.       Rhee, I.. 1996. Evolution of environmentally acceptable hydraulic fluids. NLGI Spokesman 60 (5), 28.

2.       Randles, S.J., Wright, M., 1992. Environmentally considerable ester lubrication for the automotive and engineering industeries. J. Synth. Lubr. 9: 145-161.

3.       Castro, W., Perez, J.M., Erhan, S.Z., Caputo, F., 2006. A study of the oxidation and wear properties of vegetable oils: Soybean oil without additives. J. Am. Oil Chem. Soc. 83: 47-52.

4.       Doll, K.M., Sharma, B.K., Erhan, S.Z., 2007. Synthesis of branched methyl hydroxy strearates including an ester from bio-based levulinic acid. Ind. Eng. Chem. Res. 46: 3513-3519.

5.       Rudnick, L., 2002. Biobased industrial fluids and lubrication. AOCS Press, Champaign, IL.

6.       Fuks, G.I., 1963. Research in surface forces, New York, Consultants Bureau, pp. 29-88.

7.       Asadauskas, S., Perez, J.M., Duda, J.L., 1996. Oxidative stability and antiwear properties of high oleic vegetable oils. Lub. Eng. 52: 877-882.

8.       Schuster, H., Rios, L.A., Weckes, P.P., Hoelderich, W.F., 2008. Heterogenouse  catalyst for the production of new lubricants with unique proprties. Appl. Catalysis A: Gen. 348: 266-270.

9.       Salih, N., Salimon, J., Yousif, E., 2011 a. The physicochemical and tribological properties of oleic acid based triester biolubricants. Ind. Crops Prod. 33: 1089-1096.

10.    Salih, N., Salimon, J., Yousif, E., 2011 b. Synthesis of oleic acid based esters as potential basestock for biolubricant production. Turk. J. Eng. Env. Sci. 35: 115-123.

11.    American Society for Testing Materials, 2011 a. Standard test method for pour point of petroleum products (automatic pressure pulsing method). ASTM, West Conshohcken, PA (USA).     

12.    American Society for Testing Materials, 2011 b. Standard test method for cloud point of petroleum products (constant cooling rate method). ASTM, West Conshohcken, PA (USA).     

13.    American Society for Testing Materials, 2011 c. Standard test method for flash point by Tag Closed Cup Tester. ASTM, West Conshohcken, PA (USA).

14.    American Society for Testing Materials, 2011 d. Standard Test Method for kinematic viscosity of transparent and opaque liquids. ASTM, West Conshohcken, PA (USA).

15.    American Society for Testing Materials, 2011 e. Standard practice for calculating viscosity index from kinematic viscosity at 40 and 100 ˚C. ASTM, West Conshohcken, PA (USA).

16.    American Society for Testing Materials, 2011 f. Standard test method for density, relative density (specific gravity), or API gravity of crude petroleum and liquid petroleum products by hydrometer method. ASTM, West Conshohcken, PA (USA).

17.    American Society for Testing Materials, 2011 g. Standard test method for measure the volatility of petroleum products. ASTM, West Conshohocken, PA (USA).

18.    American Society for Testing Materials, 2011 h. Standard test method for wear preventive characteristics of lubricating fluid (four-ball method). ASTM, West Conshohocken, PA (USA).

19.    Salimon, J., Salih, N., Yousif, E., 2011 a. Synthetic biolubricant basestocks from epoxidized ricinoleic acid: improved low temperature properties. Kem. Ind. 60 127-134.

20.    Salimon, J., Salih, N., Yousif, E., 2011 b. Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. J. Saudi Chem. Soc. 15, 195-201.

21.    Sliverstien, R., Bassler, G., Morrill, T., 2005. Spectrometric identification of organic compounds. 7th  ed., John-Wiley, New York.

22.    Salimon, J., Salih, N., 2010. Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian J. Chem. 22: 5468-5476.

23.    Hwang, H.-S., Erhan, S.Z., 2001. Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J. Am. Oil Chem. Soc. 78: 1179-1184.

24.    Zhang, Y.Y., Ren, T.H., Wang, H.D., Yi, M.R., 2004. A comparative study of phenol-type antioxidant in methyl oleate with quantum calculations and experiments. Lub. Sci. 16: 385-392.     

25.    Randals, S.J., 1999. Esters. In: Rudnick, L.R., Shubkin, R.L. (Eds.), Synthetic lubricants and high performance functional fluids. Marcel Dekker, New York, pp. 63-102.

26.    Sharma, B.K., Adhvaryu, A., Liu, Z., Erhan, S.Z., 2009. Friction and wear behavior of thioether hydroxyl vegetable oil. Tribology Int. 42 353-358.

 

Previous                    Content                    Next