The
Malaysian Journal of Analytical Sciences Vol 17 No 1 (2013): 129 – 138
DEOXYGENATION OF PLANT FATTY ACID USING NiSnK/SiO2
AS CATALYST
(Penyahoksigenan
Asid Lemak Tumbuhan Dengan Menggunakan NiSnK/SiO2
Sebagai Pemangkin Komposit)
L. T. Chiam and C. T. Tye*
School of Chemical Engineering, Engineering Campus,
Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau
Pinang, Malaysia
*Corresponding author: chcttye@eng.usm.my
Abstract
Environmental
friendly bio-oil which offers supply reliability as a potential alternative
fuel, has spurred to rapid development of biofuels technology. Palm oil is a potential
renewable energy source for biofuels production in the future and Malaysia is one
of the world largest palm oil producers. However, undesired oxygen content in the
plant fatty acid that contributes to low energy density, high viscosity, and
low stability, makes the palm oil not effective to be used as biofuels
directly. In the present study, the performance of silica supported trimetal catalyst,
NiSnK/SiO2, on deoxygenation of used palm oil was evaluated. In
addition, the effects of operating parameters, such as reaction temperature and
weight hourly space velocity were investigated. Conversion of palmitic acid as
high as 90% was achieved in deoxygenation of used palm oil at reaction
temperature 350oC. In order to have a better understanding on the
deoxygenation reaction, model compound system using the major saturated fatty
acid in the used palm oil, palmitic acid was also carried out. Palmitic acid
was found mainly decarboxylated into n-pentadecane with some decarbonylation and
isomerizations products.
Keywords: Deoxygenation,
used palm oil, palmitic acid, NiSnK/Silica
References
4. Lam, M. K., Tan, K. T., Lee, K. T.
& Mohamed, A. R. (2009). Malaysian palm oil:
Surviving the food versus fuel dispute for a sustainable future. Renewable and Sustainable Energy Reviews,
13(6-7): 1456-1464.
6. Kwon, K. C., Mayfield, H.,
Marolla, T., Nichols, B. & Mashburn, M.
(2011). Catalytic deoxygenation of liquid biomass for hydrocarbon fuels. Renewable Energy, 36(3): 907-915.
7. Rakopoulos, C. D., Antonopoulos,
K. A., Rakopoulos, D. C., Hountalas, D. T. & Giakoumis, E. G. (2006). Comparative performance and emissions study of a
direct injection Diesel engine using blends of Diesel fuel with vegetable oils
or bio-diesels of various origins. Energy
Conversion and Management, 47(18-19): 3272-3287.
9. Lestari, S., Mäki‐Arvela,
P., Beltramini, J., Lu, G. Q. M. & Murzin, D. Y. (2009). Transforming triglycerides and fatty acids into
biofuels. ChemSusChem, 2(12): 1109-1119.
10. Immer, J. G., Kelly, M. J. & Lamb,
H. H. (2010). Catalytic reaction pathways in
liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1): 134-139.
11. Snåre, M., Kubic Ková, I.,
Mäki-Arvela, P., Eränen, K. & Murzin, D. Y. (2006). Heterogeneous catalytic deoxygenation of stearic acid for production of
biodiesel. Industrial & engineering
chemistry research, 45(16): 5708-5715.
12. Mäki-Arvela, P., Mäki-Arvela,
P., Snåre, M., Eränen, K., Myllyoja, J. & Murzin, D. Y. (2008). Continuous
Decarboxylation Of Lauric Acid Over Pd/C Catalyst. Fuel, 87(17-18): 3543-3549.
13.
Do, P.T., Chiappero, M.,
Lobban, L. L. & Resasco, D. E. (2009). Catalytic
deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3.
Catalysis letters, 130(1): 9-18.
14. Chiappero, M., Do, P. T. M.,
Crossley, S., Lobban, L. L. & Resasco, D. E. (2011). Direct conversion
of triglycerides to olefins and paraffins over noble metal supported catalysts.
Fuel, 90(3): 1155-1165.
16. Penkova, A., Bobadilla, L.,
Ivanova, S., Domínguez, M. I., Romero-Sarria, F., Roger, A. C., Centeno, M. A.
& Odriozola, J. A. (2011). Hydrogen production by methanol steam
reforming on NiSn/MgO–Al2O3 catalysts: The role of MgO addition. Applied Catalysis A: General, 392(1-2):
184-191.
18. Bernas, H., Eränen, K.,
Simakova, I., Leino, A.-R., Kordás, K., Myllyoja, J., Mäki-Arvela, P., Salmi, T.
& Murzin, D. Y. (2010). Deoxygenation of dodecanoic acid under inert
atmosphere. Fuel, 89(8): 2033-2039.
19. Hoekman, S.K., Hoekman, S. K.,
Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. (2012). Review of
biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1): 143-169.
22. Sing, K., Everett, D.,
Haul, R., Moscou, L., Pierotti, R., Rouquerol, J. & Siemieniewska, T.
(1985). Reporting physisorption data for gas/solid
systems. Pure Appl. Chem, 57(4):
603-619.
23. Priecel, P., Kubička,
D., Čapek, L., Bastl, Z. & Ryšánek, P. (2011). The role of Ni species in the deoxygenation of rapeseed oil over
NiMo-alumina catalysts. Applied Catalysis
A: General, 397(1-2): 127-137.
24. Snåre, M., Kubičková,
I., Mäki-Arvela, P., Chichova, D., Eränen, K. & Murzin, D. Y. (2008). Catalytic
deoxygenation of unsaturated renewable feedstocks for production of diesel fuel
hydrocarbons. Fuel, 87(6): 933-945.
25.
Simakova, I., Simakova, O.,
Mäki-Arvela, P., Simakov, A., Estrada, M. & Murzin, D. Y. (2009). Deoxygenation of palmitic and stearic acid over
supported Pd catalysts: Effect of metal dispersion. Applied Catalysis A: General, 355(1-2): 100-108.