The Malaysian Journal of Analytical Sciences Vol 17 No 1 (2013): 129 – 138

 

 

 

DEOXYGENATION OF PLANT FATTY ACID USING NiSnK/SiO2 AS CATALYST

 

(Penyahoksigenan Asid Lemak Tumbuhan Dengan Menggunakan NiSnK/SiO2

Sebagai Pemangkin Komposit)

 

L. T. Chiam and C. T. Tye*

 

School of Chemical Engineering, Engineering Campus,

Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

 

*Corresponding author: chcttye@eng.usm.my

 

 

Abstract

Environmental friendly bio-oil which offers supply reliability as a potential alternative fuel, has spurred to rapid development of biofuels technology. Palm oil is a potential renewable energy source for biofuels production in the future and Malaysia is one of the world largest palm oil producers. However, undesired oxygen content in the plant fatty acid that contributes to low energy density, high viscosity, and low stability, makes the palm oil not effective to be used as biofuels directly. In the present study, the performance of silica supported trimetal catalyst, NiSnK/SiO2, on deoxygenation of used palm oil was evaluated. In addition, the effects of operating parameters, such as reaction temperature and weight hourly space velocity were investigated. Conversion of palmitic acid as high as 90% was achieved in deoxygenation of used palm oil at reaction temperature 350oC. In order to have a better understanding on the deoxygenation reaction, model compound system using the major saturated fatty acid in the used palm oil, palmitic acid was also carried out. Palmitic acid was found mainly decarboxylated into n-pentadecane with some decarbonylation and isomerizations products.  

 

Keywords: Deoxygenation, used palm oil, palmitic acid, NiSnK/Silica

 

References

1.       Ayhan, D. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86(1): S108-S117.

2.       Timilsina, G.R. & Shrestha, A. (2011). How much hope should we have for biofuels? Energy, 36(4): 2055-2069.

3.       Zhou, A. & Thomson, E. (2009). The development of biofuels in Asia. Applied Energy, 86(1): S11-S20.

4.       Lam, M. K., Tan, K. T., Lee, K. T. & Mohamed, A. R. (2009). Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renewable and Sustainable Energy Reviews, 13(6-7): 1456-1464.

5.       Sumathi, S., Chai, S. P. & Mohamed, A. R. (2008). Utilization of oil palm as a source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 12(9): 2404-2421.

6.       Kwon, K. C., Mayfield, H., Marolla, T., Nichols, B. & Mashburn, M. (2011). Catalytic deoxygenation of liquid biomass for hydrocarbon fuels. Renewable Energy, 36(3): 907-915.

7.       Rakopoulos, C. D., Antonopoulos, K. A., Rakopoulos, D. C., Hountalas, D. T. & Giakoumis, E. G. (2006). Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins. Energy Conversion and Management, 47(18-19): 3272-3287.

8.       Ayhan, D. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management, 44(13): 2093-2109.

9.       Lestari, S., MäkiArvela, P., Beltramini, J., Lu, G. Q. M. & Murzin, D. Y. (2009). Transforming triglycerides and fatty acids into biofuels. ChemSusChem, 2(12): 1109-1119.

10.    Immer, J. G., Kelly, M. J. & Lamb, H. H. (2010). Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Applied Catalysis A: General, 375(1):  134-139.

11.    Snåre, M., Kubic Ková, I., Mäki-Arvela, P., Eränen, K. & Murzin, D. Y. (2006). Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Industrial & engineering chemistry research, 45(16): 5708-5715.

12.    Mäki-Arvela, P., Mäki-Arvela, P., Snåre, M., Eränen, K., Myllyoja, J. & Murzin, D. Y. (2008). Continuous Decarboxylation Of Lauric Acid Over Pd/C Catalyst. Fuel, 87(17-18): 3543-3549.

13.    Do, P.T., Chiappero, M., Lobban, L. L. & Resasco, D. E. (2009). Catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catalysis letters, 130(1): 9-18.

14.    Chiappero, M., Do, P. T. M., Crossley, S., Lobban, L. L. & Resasco, D. E. (2011).  Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts. Fuel, 90(3): 1155-1165.

15.    Stern, R. & Hillion, G. (1985). Process for manufacturing a linear olefin from a saturated fatty acid or fatty acid ester. United States Patents, Pat No. 4,554,397

16.    Penkova, A., Bobadilla, L., Ivanova, S., Domínguez, M. I., Romero-Sarria, F., Roger, A. C., Centeno, M. A. & Odriozola, J. A. (2011).  Hydrogen production by methanol steam reforming on NiSn/MgO–Al2O3 catalysts: The role of MgO addition. Applied Catalysis A: General, 392(1-2): 184-191.

17.    Kubička, D. & Kaluža, L. (2010). Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 372(2): 199-208.

18.    Bernas, H., Eränen, K., Simakova, I., Leino, A.-R., Kordás, K., Myllyoja, J., Mäki-Arvela, P., Salmi, T. & Murzin, D. Y. (2010).  Deoxygenation of dodecanoic acid under inert atmosphere. Fuel, 89(8): 2033-2039.

19.    Hoekman, S.K., Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E. & Natarajan, M. (2012).  Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1): 143-169.

20.    Ong, Y.K. & Bhatia, S. (2010). The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils. Energy, 35(1): 111-119.

21.    Jain, S. & Sharma, M.P. (2010). Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 14(2): 667-678.

22.    Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J. & Siemieniewska, T. (1985).  Reporting physisorption data for gas/solid systems. Pure Appl. Chem, 57(4): 603-619.

23.    Priecel, P., Kubička, D., Čapek, L., Bastl, Z. & Ryšánek, P. (2011). The role of Ni species in the deoxygenation of rapeseed oil over NiMo-alumina catalysts. Applied Catalysis A: General, 397(1-2): 127-137.

24.    Snåre, M., Kubičková, I., Mäki-Arvela, P., Chichova, D., Eränen, K. & Murzin, D. Y. (2008).  Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel, 87(6): 933-945.

25.    Simakova, I., Simakova, O., Mäki-Arvela, P., Simakov, A., Estrada, M. & Murzin, D. Y. (2009). Deoxygenation of palmitic and stearic acid over supported Pd catalysts: Effect of metal dispersion. Applied Catalysis A: General, 355(1-2): 100-108.

 

Previous                    Content                    Next