The Malaysian Journal of Analytical Sciences Vol 17 No 1 (2013): 109 – 118

 

 

 

PENGEKSTRAKAN DAN PENCIRIAN NANOSELULOSA DARIPADA SERABUT KELAPA

 

(Extraction and Characterization of Nanocellulose from Coconut Fiber)

 

Nor Liyana Ahmad dan Ishak Ahmad*

 

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi, 
University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

 

*Corresponding author: gading@ukm.my

 

 

Abstrak

Pengubahsuaian kimia telah dijalankan ke atas serabut kelapa untuk mengekstrak nanohablur selulosa daripadanya. Antara rawatan yang dilakukan adalah rawatan alkali, rawatan penambahan peluntur dan akhirnya hidrolisis menggunakan asid sulfurik pekat. Kesan setiap rawatan kimia terhadap serabut kelapa dianalisa menggunakan spektroskopi inframerah transformasi Fourrier (FTIR) dan analisis pembelauan sinar-X (XRD). Seterusnya perubahan morfologi permukaan dikaji menggunakan mikroskop imbasan elektron (SEM) manakala kestabilan terma gentian serabut kelapa dikaji melalui analisis termogravimetrik (TGA). Hasil analisis menunjukkan pengubahsuaian kimia yang dilakukan dapat menyingkirkan hemiselulosa dan lignin daripada serabut kelapa. Analisis XRD juga telah menunjukkan peningkatan kehabluran serabut selepas setiap peringkat rawatan. Nanoselulosa yang terhasil daripada proses hidrolisis menggunakan asid sulfurik dianalisis menggunakan mikroskop transmisi elektron (TEM) bagi mengenal pasti saiz nanoselulosa yang diperoleh. Didapati purata diameter nanoselulosa daripada serabut kelapa adalah 13.7 ± 6.2 nm manakala panjangnya adalah 172.34 ± 8.4 nm. Selulosa nanohablur mempunyai pelbagai potensi dalam aplikasi seperti bioperubatan, jerapan minyak, membran, farmasi dan biokomposit. 

 

Kata kunci: serabut kelapa, nanohablur selulosa, lignin, hemiselulosa

 

Abstract

Coconut husk fibers has been modified by some chemical treatments to extract cellulose nanocrystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nanocellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nanocellulose. The cellulose nanocrystals from coconut fibre has the average diameter and length in the range 13.7 ± 6.2 nm and 172.3 ± 8.4 nm, respectively. The obtained nanocellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and biocomposites.

 

Keywords: Coconut husk fiber, cellulose nanocrystals (CNC), lignin, hemicelluloses

 

References

1.       Defoirdt, N., Biswas, S., De Vries, L., Tran, L. Q. N., Van Aker, J., Ahsan, Q., Gorbatikh, L., Van Vuure, A. & Verpoest, I. 2010. Assessment of the tensile properties of coir, bamboo and jute fibre. Composites A. 41: 588-595.

2.       Geethamma, V. G., Kalaprasad, G., Gabriel, G., Sabu, T. 2005. Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Composites. 36: 1499-506. 

3.       Asasutjarit, C., Charoenvi, S., Hirunlabh, J. & Khedari, J. 2009. Materials and mechanical properties of pretreated coir-based green composites. Composites: Part B. 40: 633-637.

4.       Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., & Yao, J. 2009. Cellulose whiskers extracted from mulberry: A novel biomass production, carbohydrate polymers. Carbohydrate Polymers 76: 94–99.

5.       Segal, L., Creely, L., Martin, A.E., Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29: 786–794.

6.       Rout, J., Misra, M., Tripathy, S. S., Nayak, S. K. & Mohanty, A. K. 2001. The influence of fibre treatment on the performance of coir-polyester composites. Composites Science and Technology. 61: 1303-1310.

7.       Azizi, M. A. S., Alloin, F., & Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6(2): 612-616.

8.       Lai-Kee-Him, H., Chanzy, H., Muler, M., Putaux, J. L., Imai, T. & Bulone, V. 2002. In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: Structural differences. The Journal of Biological Chemistry, 277(40): 36931-36939.

9.       Bondenson, D., Kvien, I. & Oksman, K. 2006. Strategies for preparation of cellulose whiskers from microcrystalline cellulose (MCC) as reinforcement. In: Oksman, K., Sain, M., editors. Cellulose nanocomposites: processing, characterization and properties. ACS symposium series, jilid 938. Oxford: Oxford University Press.

10.    Zuluanga, R., Putaux, J. L., Cruz, J., Velez, J., Mondragon, I., Ganan, P. 2009. Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydrate Polymer. 76: 51-59.

11.    Moran, J. I., Alvarez, V. A., Cyras, V. P. & Vazquez, A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose. 15: 149-159.

12.    Socrates, G. 2004. Infrared and raman characteristic group frequencies. New York: John Wiley & Sons. p. 366.

13.    Marchessault, R. H., & Sundararajan, P. R. 1993. In G. O. Aspinall (Ed.), The polysaccharides. 2. New York: Academic Press. p. 44.

14.    M.F. Rosa, E.S. Medeiros, J.A. Malmonge, K.S. Gregorski, D.F. Wood, L.H.C. Mattosa, G.Glenn, W.J. Orts & S.H.Imam. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers 81: 83-92.

 

 

 

Previous                    Content                    Next