Malaysian Journal of Analytical Sciences, Vol 26 No 5 (2022): 1142 - 1157

 

DFT STUDY ON STRUCTURAL PROPERTIES, DENSITY OF STATES AND BAND STRUCTURE OF MONOLAYER & BILAYER GRAPHENE

 

(Kajian Teori Tentang Sifat Struktur, Ketumpatan Keadaan dan

Struktur Jalur Grafin Lapisan Tunggal dan Dwi Lapisan)

 

Nurhafizah Md Disa*, Henna Malakar, Nurhayati Abdullah

 

School of Physics,

Universiti Sains Malaysia, 11800 USM Gelugor, Penang, Malaysia

 

*Corresponding author: mdnurhafizah@usm.my

 

 

Received: 16 November 2021; Accepted: 27 February 2022; Published:  30 October 2022

 

 

Abstract

This two-dimensional (2-D) carbon structure, known as graphene, has tremendous potential due to its unique properties. This research intends to identify the existing knowledge gap because of the lack of substantial studies and prior comparisons in bilayer graphene and bring to light any pertinent differences between monolayer and bilayer graphene in this field. So, a density functional theory (DFT) study was done using a Quantum Espresso package for analysing the structural properties of mono- and bi-layer graphene. Generalised gradient approximation (GGA) under Perdew-Burke-Ernzerhof (PBE) of the DFT study and pseudopotential method was employed in this research. The monolayer and bilayer graphene have successfully predicted the bandgap and the Density of states (DOS), proving the zero-gap semiconductor tag. Furthermore, the band structure of the monolayer graphene illustrated a toroidal like shape, whereas the bilayer graphene projected a hyperbolic type of band-structure. The hybridisation of graphene was identified as sp2 in which the bilayer graphene consumed more time for the orbital hybridisation compared to that of the monolayer. Therefore, this study is able to obtain the band gap vale for monolayer and bilayer graphene and provide a detail studies related to bilayer graphene beneficial for semiconductor applications. 

 

Keywords: density functional theory, graphene, quantum espresso, structural properties, bandgap

 

Abstrak

Struktur karbon dua dimensi (2-D) ini, yang dikenali sebagai grafin, berpotensi besar kerana sifatnya yang unik. Penyelidikan ini mengatasi ketiadaan pengetahuan yang ada kerana kekurangan nilai teori yang signifikan dalam struktur jalur dwi lapisan dan perbandingan yang jelas dari lapisan tunggal dan lapisan dwi grafin dalam kajian sebelumnya. Oleh itu, kajian teori fungsi ketumpatan (DFT) dilakukan menggunakan pakej espresso kuantum untuk menganalisis sifat struktur grafin lapisan tunggal dan lapisan dwi. Kaedah gradien umum (GGA) di bawah Perdew-Burke-Ernzerhof (PBE) kajian DFT dan kaedah pseudopotensial digunakan dalam penyelidikan ini. Struktur jalur dan ketumpatan telah berjaya diramalkan oleh kajian grafin lapisan tunggal dan lapisan dwi, yang membuktikan tanda semikonduktor jurang sifar. Tambahan pula, struktur pita bentuk yang digambarkan untuk grafin lapisan tunggal adalah toroidal manakala grafin dwi lapisan mengunjurkan jenis struktur pita hiperbolik. Hibridisasi grafin dikenal pasti sebagai sp2 di mana grafin dwi lapisan menggunakan lebih banyak masa untuk hibridisasi orbit berbanding dengan grafin lapisan tunggal. Oleh itu, kajian ini dapat memperoleh nilai jurang jalur untuk grafin lapisan tunggal dan dwi lapisan serta menyediakan kajian terperinci berkaitan grafin dwilapisan yang bermanfaat untuk aplikasi semikonduktor.

 

Kata kunci: teori fungsi ketumpatan, grafin, espresso kuantum, sifat struktur, jurang jalur


 

 

References

1.       Abbood, H. I. and Jabour, H. S. (2017). Theoretical study of electronic and electrical properties of pure and doped graphene sheets. International Journal of Advanced Engineering Research and Science, 4(7): 124-127

2.       Arrigoni, M. and Madsen, G. K. H. (2018). Comparing the performance of LDA and GGA functionals in predicting the lattice thermal conductivity of semiconductor materials: the case of AlAs. Computational Materials Science, 156: 354-360.

3.       Banerjee, S. and Bhattacharyya, D. (2008). Electronic properties of nano-graphene sheets calculated using quantum chemical DFT. Computational Materials Science, 44(1): 41-45.

4.       Bas, S. Z., Ozmen, M. and Yildiz, S. (2017). Electrochemical H2O2 sensor based on graphene oxide-iron oxide nanoparticles composite. 7th International Conference Nanomaterials: Application & Properties, pp. 04NB05-1

5.       Castro, E. V, Peres, N. M. R., Santos, J. M. B. L. dos, Guinea, F. and Neto, A. H. C. (2008). Bilayer graphene: gap tunability and edge properties. Journal of Physics: Conference Series, 129: 012002.

6.       Chaitanya Sagar, T. and Chinthapenta, V. (2018). Lower and upper bound estimates of material properties of pristine graphene: Using quantum espresso. Advances in Structural Integrity (pp. 253–265). Springer Singapore.

7.       Chu, K.-L., Wang, Z.-B., Zhou, J.-J. and Jiang, H. (2017). Transport properties in monolayer–bilayer–monolayer graphene planar junctions. Chinese Physics B, 26(6): 067202.

8.       Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E. and Yu, V. (2012). Experimental review of graphene. ISRN Condensed Matter Physics, 2012: 1-56.

9.       Cruz-Silva, E., Jia, X., Terrones, H., Sumpter, B. G., Terrones, M., Dresselhaus, M. S. and Meunier, V. (2013). Edge–Edge Interactions in Stacked Graphene Nanoplatelets. ACS Nano, 7(3): 2834-2841.

10.    Dai, X. S., Shen, T. and Liu, H. C. (2019). DFT study on electronic and optical properties of graphene modified by phosphorus. Materials Research Express, 6(8): 085635.

11.    Dinh Le, T.-S., An, J. and Kim, Y.-J. (2017). Femtosecond laser direct writing of graphene oxide film on polydimethylsiloxane (PDMS) for flexible and stretchable electronics. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017: 1-4.

12.    Freitas, R. R. Q., Rivelino, R., Mota, F. de B. and de Castilho, C. M. C. (2011). DFT Studies of the Interactions of a Graphene Layer with Small Water Aggregates. The Journal of Physical Chemistry A, 115(44): 12348-12356.

13.    Gao, H. and Liu, Z. (2017). DFT study of NO adsorption on pristine graphene. RSC Advances, 7(22): 13082-13091.

14.    Geng, W., Zhao, X., Liu, H. and Yao, X. (2013). Influence of interface structure on the properties of ZnO/graphene composites: A theoretical study by density functional theory calculations. The Journal of Physical Chemistry C, 117(20): 10536-10544.

15.    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … and Wentzcovitch, R. M. (2009). Quantum Espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39): 395502.

16.    Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., de Gironcoli, S., Delugas, P., Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I., Urru, A. and Baroni, S. (2020). Quantum Espresso toward the exascale. The Journal of Chemical Physics, 152(15): 154105.

17.    Gil, D. M., Defonsi Lestard, M. E., Estévez-Hernández, O., Duque, J. and Reguera, E. (2015). Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo analysis of 1-benzyl-3-(2-furoyl) thiourea. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 553-562.

18.    Gopinath, K. P., Vo, D.-V. N., Gnana Prakash, D., Adithya Joseph, A., Viswanathan, S. and Arun, J. (2021). Environmental applications of carbon-based materials: a review. Environmental Chemistry Letters, 19(1): 557-582

19.    Griffiths, K., Dale, C., Hedley, J., Kowal, M. D., Kaner, R. B. and Keegan, N. (2014). Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 6(22): 13613–13622.

20.    Hossain, M. T., Alam, M. N. K. and Islam, M. R. (2016). Gate oxide dependent performance of graphene FET using quasi-ballistic transport model. 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1-5.

21.    Hosseindokht, Z., Paryavi, M., Asadian, E., Mohammadpour, R., Rafii-Tabar, H. and Sasanpour, P. (2017). Pressure sensor based on patterned laser scribed reduced graphene oxide; experiment & modeling. 2017 International Conference on Orange Technologies (ICOT), pp. 15-17.

22.    Jeon, C., Shin, H.-C., Song, I., Kim, M., Park, J.-H., Nam, J., Oh, D.-H., Woo, S., Hwang, C.-C., Park, C.-Y. and Ahn, J. R. (2013). Opening and reversible control of a wide energy gap in uniform monolayer graphene. Scientific Reports, 3(1): 2725.

23.    Jigmat Stondus. (2016). Study of single and few-layers MoS2 crystals. Master of Science, Banaras Hindu University.

24.    Ke, X., Hao, G., Rong, Y., Zhou, X., Liu, J., Xiao, L. and Jiang, W. (2016). A facile approach to the hydrothermal synthesis of graphene. 16th International Conference on Nanotechnology (IEEE-NANO), pp. 604-607.

25.    Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B., Fatin, M. F., Thivina, V., Tony, V. C. S., Md Arshad, M. K., Voon, C. H. and Hashim, U. (2016). Surface morphology of reduced graphene oxide-carbon nanotubes hybrid film for bio-sensing applications. International Conference on Semiconductor Electronics (ICSE), pp. 320-323.

26.    Kumar, R., Dias, W., Rubira, R. J. G., Alaferdov, A. V., Vaz, A. R., Singh, R. K., Teixeira, S. R., Constantino, C. J. L. and Moshkalev, S. A. (2018). Simple and fast approach for synthesis of reduced graphene oxide–MoS2 hybrids for room temperature gas detection. IEEE Transactions on Electron Devices, 65(9): 3943-3949.

27.    Lebedeva, I. V., Knizhnik, A. A., Popov, A. M., Lozovik, Y. E. and Potapkin, B. V. (2011). Interlayer interaction and relative vibrations of bilayer graphene. Physical Chemistry Chemical Physics, 13(13): 5687.

28.    Lin, S.-P., Ciou, J.-Y., Lai, T.-Y. and Lin, T.-W. (2017). Impedimetric investigation of dual electrical properties of reduced graphene-oxide-based biosensors in the detection of dopamine. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4098-4101.

29.    Liu, X.-S., Bo, Z.-M., Tu, W.-C., Lin, M.-Y. and Chen, S.-L. (2017). Enhanced performance of reduced graphene oxide photodetectors by Ag nanoparticles. Eleventh International Conference on Sensing Technology (ICST), pp. 1-4.

30.    Liu, Z., Suenaga, K., Harris, P. J. F. and Iijima, S. (2009). Open and closed edges of graphene layers. Physical Review Letters, 102(1): 015501.

31.    Marguna, S., Sulthoni, M. A., Anshori, I., Yuliarto, B., Surawijaya, A. and Utari, L. (2019). Synthesis of zinc oxide (ZnO) – graphene nanocomposite as CO gas sensor application. International Symposium on Electronics and Smart Devices (ISESD), pp. 1-4.

32.    Mi, W.-T., Qi, H.-Y., Zhao, H.-M., Li, Y.-X., Yang, Y. and Ren, T.-L. (2016). Ultrasound-aided spray casting for graphene oxide deposition. 2016 IEEE International Nanoelectronics Conference (INEC), pp. 1-2.

33.    Mucha-Kruczyński, M., Aleiner, I. L. and Fal’ko, V. I. (2011). Strained bilayer graphene: Band structure topology and Landau level spectrum. Physical Review B, 84(4): 041404.

34.    Ng, W.-B. (2018). Graphene-based materials for biotransistor application. Doctoral thesis, Nanyang Technological University, Singapore.

35.    Ojo, O. O., Jonnalagadda, S. B. and Martincigh, B. S. (2018). Synthesis of graphene oxide under differing conditions and its characterization. 8th International Conference Nanomaterials: Application & Properties (NAP), pp. 1-4.

36.    Pang, Y., Yang, Z., Xie, X. and Tao, L.-Q. (2020). Graphene oxide modified porous graphene for aqueous alcohol detection. IEEE Sensors Letters, 4(2): 1-4.

37.    Papadakis, I., Stathis, A., Karampitsos, N., Stavrou, M., Kyrginas, D. and Couris, S. (2020). UV Laser photo-reduction of graphene oxide and graphene fluoride for the efficient tuning of their nonlinear optical response. 22nd International Conference on Transparent Optical Networks (ICTON), pp. 1-4.

38.    Pashangpour, M. and Ghaffari, V. (2013). Investigation of structural and electronic transport properties of graphene and graphane using maximally localized Wannier functions. Journal of Theoretical and Applied Physics, 7(1): 9.

39.    Quhe, R., Ma, J., Zeng, Z., Tang, K., Zheng, J., Wang, Y., Ni, Z., Wang, L., Gao, Z., Shi, J. and Lu, J. (2013). Tunable band gap in few-layer graphene by surface adsorption. Scientific Reports, 3(1): 1794.

40.    Rai, S., Bhujel, R. and Swain, B. P. (2018). Electrochemical analysis of graphene oxide and reduced graphene oxide for super capacitor applications. IEEE Electron Devices Kolkata Conference (EDKCON), pp. 489-492.

41.    Rana, S., Sandhu, I. S. and Chitkara, M. (2018). Exfoliation of graphene oxide via chemical reduction method. 6th Edition of International Conference on Wireless Networks & Embedded Systems (WECON), pp. 54-57.

42.    Rani, P. and Bhandari, R. (2013). DFT study of defects in graphene. International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, pp. 237-239.

43.    Rani, P., Dubey, G. S. and Jindal, V. K. (2014). DFT study of optical properties of pure and doped graphene. Physica E: Low-Dimensional Systems and Nanostructures, 62: 28-35.

44.    Razado-Colambo, I., Avila, J., Vignaud, D., Godey, S., Wallart, X., Woodruff, D. P. and Asensio, M. C. (2018). Structural determination of bilayer graphene on SiC(0001) using synchrotron radiation photoelectron diffraction. Scientific Reports, 8(1): 10190.

45.    Rozhkov, A. V., Sboychakov, A. O., Rakhmanov, A. L. and Nori, F. (2016). Electronic properties of graphene-based bilayer systems. Physics Reports, 648: 1-104.

46.    Ayyappan, S. & R.Nithya. (2018). Molecular structure, NBO and HOMO-LUMO analysis of quercetin on single layer graphene by density functional theory. Digest Journal of Nanomaterials and Biostructures, 13(1): 97-105.

47.    Seenithurai, S., Pandyan, R. K., Kumar, S. V., & Mahendran, M. (2013). Electronic Properties of boron and nitrogen doped graphene. Nano Hybrids, 5: 65-83.

48.    Shruthi, G., Anshika, Baishali, G., Nella, N., Radhakrishna, V. and Rajanna, K. (2018). Investigation on reduced graphene oxide for radiation sensing application. IEEE Sensors, pp. 1-4.

49.    Song, S., Zhao, H., Zheng, X., Zhang, H., Liu, Y., Wang, Y. and Han, B. (2018). A density functional theory study of the role of functionalized graphene particles as effective additives in power cable insulation. Royal Society Open Science, 5(2): 170772.

50.    Khan, T. T. (2017). Spectroscopic and microscopic analysis of graphene for sensor applications. The University of Texas at El Paso.

51.    Tencha, A., Fedoriv, V., Shtepliuk, I., Yakimova, R., Ivanov, I., Khranovskyy, V., Shavanova, K. and Ruban, Y. (2017). Synthesis of graphene oxide inks for printed electronics. IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 155-158.

52.    Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M. and Khenfouch, M. (2013). Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. Journal of Chemistry, 2013: 1-6.

53.    Torrisi, L., Silipigni, L. and Cutroneo, M. (2018). Radiation effects of IR laser on graphene oxide irradiated in vacuum and in air. Vacuum, 153: 122-131.

54.    You, T., Yang, N., Shu, Y. and Yin, P. (2019). A DFT study on graphene‐based surface‐enhanced Raman spectroscopy of Benzenedithiol adsorbed on gold/graphene. Journal of Raman Spectroscopy, 50(10): 1510-1518


55.    Zainal, N., How, J. F., Choo, X. H. and Soon, C. F. (2020). Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) using Modified Tour’s method for sensing device applications. 2020 IEEE Student Conference on Research and Development (SCOReD): pp. 385-390.

56.    Zhan, D. (2013). Structural and electronic properties of graphene and modified graphene. Doctoral thesis, Nanyang Technological University, Singapore.

57.    Zhang, D., Liu, J. and Xia, B. (2016). Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Device Letters, 37(7): 916-919.

58.    Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen, Y. R. and Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459(7248): 820-823.

59.    Vu, K. B., Le Phuc Nhi, T., Vu, V. V. and Tung Ngo, S. (2020). How do magnetic, structural, and electronic criteria of aromaticity relate to HOMO – LUMO gap? An evaluation for graphene quantum dot and its derivatives. Chemical Physics, 539: 110951.

60.    Zhu, Z., Chutia, A., Sahnoun, R., Koyama, M., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Del Carpio, C. A. and Miyamoto, A. (2008). Theoretical study on electronic and electrical properties of nanostructural ZnO. Japanese Journal of Applied Physics, 47(4): 2999-3006.