Malaysian Journal of Analytical
Sciences, Vol 26
No 5 (2022): 1142 - 1157
DFT STUDY ON STRUCTURAL PROPERTIES, DENSITY OF
STATES AND BAND STRUCTURE OF MONOLAYER & BILAYER GRAPHENE
(Kajian Teori Tentang Sifat
Struktur, Ketumpatan Keadaan dan
Struktur Jalur Grafin
Lapisan Tunggal dan Dwi Lapisan)
Nurhafizah Md Disa*, Henna
Malakar, Nurhayati Abdullah
School of Physics,
Universiti Sains Malaysia, 11800 USM Gelugor, Penang,
Malaysia
*Corresponding author:
mdnurhafizah@usm.my
Received: 16 November 2021; Accepted:
27 February 2022; Published: 30 October
2022
Abstract
This two-dimensional (2-D) carbon structure, known
as graphene, has tremendous potential due to its unique properties. This
research intends to identify the existing knowledge gap because of the lack of
substantial studies and prior comparisons in bilayer graphene and bring to
light any pertinent differences between monolayer and bilayer graphene in this
field. So, a density functional theory (DFT) study was done using a Quantum
Espresso package for analysing the structural properties of mono- and bi-layer graphene.
Generalised gradient approximation (GGA) under Perdew-Burke-Ernzerhof (PBE) of the DFT study and pseudopotential method
was employed in this research. The monolayer and bilayer graphene have
successfully predicted the bandgap and the Density of states (DOS), proving the
zero-gap semiconductor tag. Furthermore, the band structure of the monolayer
graphene illustrated a toroidal like shape, whereas the bilayer graphene
projected a hyperbolic type of band-structure. The hybridisation of graphene was
identified as sp2 in which the bilayer graphene consumed more time
for the orbital hybridisation compared to that of the monolayer. Therefore,
this study is able to obtain the band gap vale for monolayer and bilayer
graphene and provide a detail studies related to bilayer graphene beneficial
for semiconductor applications.
Keywords: density functional theory, graphene, quantum
espresso, structural properties, bandgap
Abstrak
Struktur karbon dua dimensi (2-D)
ini, yang dikenali sebagai grafin, berpotensi besar kerana sifatnya yang unik.
Penyelidikan ini mengatasi ketiadaan pengetahuan yang ada kerana kekurangan
nilai teori yang signifikan dalam struktur jalur dwi lapisan dan perbandingan
yang jelas dari lapisan tunggal dan lapisan dwi grafin
dalam kajian sebelumnya. Oleh itu, kajian teori fungsi ketumpatan (DFT)
dilakukan menggunakan pakej espresso kuantum untuk
menganalisis sifat struktur grafin lapisan tunggal dan lapisan dwi. Kaedah
gradien umum (GGA) di bawah Perdew-Burke-Ernzerhof
(PBE) kajian DFT dan kaedah pseudopotensial digunakan dalam
penyelidikan ini. Struktur jalur dan ketumpatan telah berjaya diramalkan oleh
kajian grafin lapisan tunggal dan lapisan dwi, yang membuktikan tanda
semikonduktor jurang sifar. Tambahan pula, struktur pita bentuk yang
digambarkan untuk grafin lapisan tunggal adalah toroidal manakala grafin dwi lapisan mengunjurkan jenis struktur
pita hiperbolik. Hibridisasi grafin dikenal pasti sebagai sp2 di
mana grafin dwi lapisan menggunakan lebih banyak masa untuk hibridisasi orbit
berbanding dengan grafin lapisan tunggal. Oleh itu, kajian ini dapat memperoleh
nilai jurang jalur untuk grafin lapisan tunggal dan dwi lapisan serta
menyediakan kajian terperinci berkaitan grafin dwilapisan yang bermanfaat untuk
aplikasi semikonduktor.
Kata kunci: teori
fungsi ketumpatan, grafin, espresso kuantum, sifat struktur, jurang jalur
References
1.
Abbood, H. I. and Jabour, H. S. (2017). Theoretical
study of electronic and electrical properties of pure and doped graphene
sheets. International Journal of Advanced Engineering Research and Science,
4(7): 124-127
2.
Arrigoni,
M. and Madsen, G. K. H. (2018). Comparing the performance of LDA and GGA
functionals in predicting the lattice thermal conductivity of semiconductor
materials: the case of AlAs. Computational Materials Science, 156: 354-360.
3.
Banerjee,
S. and Bhattacharyya, D. (2008). Electronic properties of nano-graphene sheets
calculated using quantum chemical DFT. Computational Materials Science,
44(1): 41-45.
4.
Bas,
S. Z., Ozmen, M. and Yildiz, S. (2017). Electrochemical H2O2 sensor
based on graphene oxide-iron oxide nanoparticles composite. 7th
International Conference Nanomaterials: Application & Properties, pp. 04NB05-1
5. Castro, E. V, Peres, N. M. R., Santos, J. M. B. L.
dos, Guinea, F. and Neto, A. H. C. (2008). Bilayer graphene: gap tunability and
edge properties. Journal of Physics: Conference Series, 129: 012002.
6.
Chaitanya
Sagar, T. and Chinthapenta, V. (2018). Lower and upper bound estimates of
material properties of pristine graphene: Using quantum espresso. Advances
in Structural Integrity (pp. 253–265). Springer Singapore.
7.
Chu, K.-L., Wang, Z.-B., Zhou, J.-J. and Jiang, H.
(2017). Transport properties in
monolayer–bilayer–monolayer graphene planar junctions. Chinese Physics B,
26(6): 067202.
8.
Cooper,
D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis,
N., Massicotte, M., Vandsburger, L., Whiteway, E. and Yu, V. (2012).
Experimental review of graphene. ISRN Condensed Matter Physics, 2012:
1-56.
9.
Cruz-Silva,
E., Jia, X., Terrones, H., Sumpter, B. G., Terrones, M., Dresselhaus, M. S. and
Meunier, V. (2013). Edge–Edge
Interactions in Stacked Graphene Nanoplatelets. ACS Nano, 7(3):
2834-2841.
10.
Dai,
X. S., Shen, T. and Liu, H. C. (2019). DFT study on electronic and optical properties
of graphene modified by phosphorus. Materials Research Express, 6(8):
085635.
11.
Dinh Le, T.-S., An, J. and Kim, Y.-J. (2017). Femtosecond laser direct writing of graphene oxide
film on polydimethylsiloxane (PDMS) for flexible and stretchable electronics. Conference
on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017: 1-4.
12.
Freitas,
R. R. Q., Rivelino, R., Mota, F. de B. and de Castilho, C. M. C. (2011). DFT Studies of the Interactions of a Graphene Layer
with Small Water Aggregates. The Journal of Physical Chemistry A,
115(44): 12348-12356.
13.
Gao,
H. and Liu, Z. (2017). DFT study of NO adsorption on pristine graphene. RSC
Advances, 7(22): 13082-13091.
14.
Geng,
W., Zhao, X., Liu, H. and Yao, X. (2013). Influence of interface structure on
the properties of ZnO/graphene composites: A theoretical study by density
functional theory calculations. The Journal of Physical Chemistry C,
117(20): 10536-10544.
15.
Giannozzi,
P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,
Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S.,
Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj,
A., Lazzeri, M., … and Wentzcovitch, R. M. (2009). Quantum Espresso: a modular
and open-source software project for quantum simulations of materials. Journal
of Physics: Condensed Matter, 21(39): 395502.
16. Giannozzi, P., Baseggio, O., Bonfà, P., Brunato,
D., Car, R., Carnimeo, I., Cavazzoni, C., de Gironcoli, S., Delugas, P.,
Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I., Urru, A. and
Baroni, S. (2020). Quantum Espresso toward the exascale. The Journal of
Chemical Physics, 152(15): 154105.
17. Gil, D. M., Defonsi Lestard,
M. E., Estévez-Hernández, O., Duque, J. and Reguera, E. (2015). Quantum chemical studies on molecular structure,
spectroscopic (IR, Raman, UV–Vis), NBO and Homo–Lumo analysis of
1-benzyl-3-(2-furoyl) thiourea. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 145, 553-562.
18. Gopinath, K. P., Vo, D.-V. N., Gnana Prakash, D.,
Adithya Joseph, A., Viswanathan, S. and Arun, J. (2021). Environmental
applications of carbon-based materials: a review. Environmental Chemistry
Letters, 19(1): 557-582
19. Griffiths, K., Dale, C., Hedley, J., Kowal, M. D.,
Kaner, R. B. and Keegan, N. (2014). Laser-scribed graphene presents an
opportunity to print a new generation of disposable electrochemical sensors. Nanoscale,
6(22): 13613–13622.
20. Hossain, M. T., Alam, M. N. K.
and Islam, M. R. (2016). Gate
oxide dependent performance of graphene FET using quasi-ballistic transport
model. 3rd International Conference on Electrical Engineering and
Information Communication Technology (ICEEICT), pp. 1-5.
21. Hosseindokht, Z., Paryavi, M., Asadian, E.,
Mohammadpour, R., Rafii-Tabar, H. and Sasanpour, P. (2017). Pressure sensor
based on patterned laser scribed reduced graphene oxide; experiment &
modeling. 2017 International Conference on Orange Technologies (ICOT),
pp. 15-17.
22. Jeon, C., Shin, H.-C., Song, I., Kim, M., Park,
J.-H., Nam, J., Oh, D.-H., Woo, S., Hwang, C.-C., Park, C.-Y. and Ahn, J. R.
(2013). Opening and reversible control of a wide energy gap in uniform
monolayer graphene. Scientific Reports, 3(1): 2725.
23. Jigmat Stondus. (2016). Study of single and
few-layers MoS2 crystals. Master of Science, Banaras Hindu
University.
24. Ke, X., Hao, G., Rong, Y., Zhou, X., Liu, J., Xiao,
L. and Jiang, W. (2016). A facile approach to the hydrothermal synthesis of
graphene. 16th International Conference on Nanotechnology
(IEEE-NANO), pp. 604-607.
25. Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B.,
Fatin, M. F., Thivina, V., Tony, V. C. S., Md Arshad, M. K., Voon, C. H. and
Hashim, U. (2016). Surface morphology of reduced graphene oxide-carbon
nanotubes hybrid film for bio-sensing applications. International Conference
on Semiconductor Electronics (ICSE), pp. 320-323.
26. Kumar, R., Dias, W., Rubira, R. J. G., Alaferdov,
A. V., Vaz, A. R., Singh, R. K., Teixeira, S. R., Constantino, C. J. L. and
Moshkalev, S. A. (2018). Simple and fast approach for synthesis of reduced
graphene oxide–MoS2 hybrids for room temperature gas detection. IEEE
Transactions on Electron Devices, 65(9): 3943-3949.
27. Lebedeva, I. V., Knizhnik, A. A., Popov, A. M.,
Lozovik, Y. E. and Potapkin, B. V. (2011). Interlayer interaction and relative
vibrations of bilayer graphene. Physical Chemistry Chemical Physics,
13(13): 5687.
28. Lin, S.-P., Ciou, J.-Y., Lai,
T.-Y. and Lin, T.-W. (2017). Impedimetric
investigation of dual electrical properties of reduced graphene-oxide-based
biosensors in the detection of dopamine. 39th Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 4098-4101.
29. Liu, X.-S., Bo, Z.-M., Tu,
W.-C., Lin, M.-Y. and Chen, S.-L. (2017). Enhanced performance of reduced graphene oxide
photodetectors by Ag nanoparticles. Eleventh International Conference on
Sensing Technology (ICST), pp. 1-4.
30. Liu, Z., Suenaga, K., Harris, P. J. F. and Iijima,
S. (2009). Open and closed edges of graphene layers. Physical Review Letters,
102(1): 015501.
31. Marguna, S., Sulthoni, M. A., Anshori, I.,
Yuliarto, B., Surawijaya, A. and Utari, L. (2019). Synthesis of zinc oxide
(ZnO) – graphene nanocomposite as CO gas sensor application. International
Symposium on Electronics and Smart Devices (ISESD), pp. 1-4.
32. Mi, W.-T., Qi, H.-Y., Zhao,
H.-M., Li, Y.-X., Yang, Y. and Ren, T.-L. (2016). Ultrasound-aided spray casting for graphene oxide
deposition. 2016 IEEE International Nanoelectronics Conference (INEC),
pp. 1-2.
33. Mucha-Kruczyński, M.,
Aleiner, I. L. and Fal’ko, V. I. (2011). Strained bilayer graphene: Band structure topology
and Landau level spectrum. Physical Review B, 84(4): 041404.
34. Ng, W.-B. (2018). Graphene-based materials for
biotransistor application. Doctoral thesis, Nanyang Technological University,
Singapore.
35. Ojo, O. O., Jonnalagadda, S. B. and Martincigh, B.
S. (2018). Synthesis of graphene oxide under differing conditions and its
characterization. 8th International Conference Nanomaterials:
Application & Properties (NAP), pp. 1-4.
36. Pang, Y., Yang, Z., Xie, X.
and Tao, L.-Q. (2020). Graphene
oxide modified porous graphene for aqueous alcohol detection. IEEE Sensors
Letters, 4(2): 1-4.
37. Papadakis, I., Stathis, A., Karampitsos, N.,
Stavrou, M., Kyrginas, D. and Couris, S. (2020). UV Laser photo-reduction of
graphene oxide and graphene fluoride for the efficient tuning of their
nonlinear optical response. 22nd International Conference on
Transparent Optical Networks (ICTON), pp. 1-4.
38. Pashangpour, M. and Ghaffari, V. (2013).
Investigation of structural and electronic transport properties of graphene and
graphane using maximally localized Wannier functions. Journal of Theoretical
and Applied Physics, 7(1): 9.
39. Quhe, R., Ma, J., Zeng, Z.,
Tang, K., Zheng, J., Wang, Y., Ni, Z., Wang, L., Gao, Z., Shi, J. and Lu, J.
(2013). Tunable band gap in
few-layer graphene by surface adsorption. Scientific Reports, 3(1):
1794.
40. Rai, S., Bhujel, R. and Swain,
B. P. (2018). Electrochemical analysis
of graphene oxide and reduced graphene oxide for super capacitor applications. IEEE
Electron Devices Kolkata Conference (EDKCON), pp. 489-492.
41. Rana, S., Sandhu, I. S. and Chitkara, M. (2018).
Exfoliation of graphene oxide via chemical reduction method. 6th
Edition of International Conference on Wireless Networks & Embedded Systems
(WECON), pp. 54-57.
42. Rani, P. and Bhandari, R. (2013). DFT study of
defects in graphene. International Conference on Advanced Nanomaterials
& Emerging Engineering Technologies, pp. 237-239.
43. Rani, P., Dubey, G. S. and
Jindal, V. K. (2014). DFT
study of optical properties of pure and doped graphene. Physica E:
Low-Dimensional Systems and Nanostructures, 62: 28-35.
44. Razado-Colambo, I., Avila, J., Vignaud, D., Godey,
S., Wallart, X., Woodruff, D. P. and Asensio, M. C. (2018). Structural
determination of bilayer graphene on SiC(0001) using synchrotron radiation
photoelectron diffraction. Scientific Reports, 8(1): 10190.
45. Rozhkov, A. V., Sboychakov, A. O., Rakhmanov, A. L.
and Nori, F. (2016). Electronic properties of graphene-based bilayer systems. Physics
Reports, 648: 1-104.
46. Ayyappan, S. & R.Nithya. (2018). Molecular
structure, NBO and HOMO-LUMO analysis of quercetin on single layer graphene by
density functional theory. Digest Journal of Nanomaterials and Biostructures,
13(1): 97-105.
47. Seenithurai, S., Pandyan, R. K., Kumar, S. V.,
& Mahendran, M. (2013). Electronic Properties of boron and nitrogen doped
graphene. Nano Hybrids, 5: 65-83.
48. Shruthi, G., Anshika, Baishali, G., Nella, N.,
Radhakrishna, V. and Rajanna, K. (2018). Investigation on reduced graphene
oxide for radiation sensing application. IEEE Sensors, pp. 1-4.
49. Song, S., Zhao, H., Zheng, X.,
Zhang, H., Liu, Y., Wang, Y. and Han, B. (2018). A density functional theory study of the role of
functionalized graphene particles as effective additives in power cable
insulation. Royal Society Open Science, 5(2): 170772.
50. Khan, T. T. (2017). Spectroscopic and microscopic analysis of
graphene for sensor applications. The University of Texas at El Paso.
51. Tencha, A., Fedoriv, V., Shtepliuk, I., Yakimova,
R., Ivanov, I., Khranovskyy, V., Shavanova, K. and Ruban, Y. (2017). Synthesis
of graphene oxide inks for printed electronics. IEEE International Young
Scientists Forum on Applied Physics and Engineering (YSF), pp. 155-158.
52. Thema, F. T., Moloto, M. J., Dikio, E. D.,
Nyangiwe, N. N., Kotsedi, L., Maaza, M. and Khenfouch, M. (2013). Synthesis and
characterization of graphene thin films by chemical reduction of exfoliated and
intercalated graphite oxide. Journal of Chemistry, 2013: 1-6.
53. Torrisi, L., Silipigni, L. and Cutroneo, M. (2018).
Radiation effects of IR laser on graphene oxide irradiated in vacuum and in
air. Vacuum, 153: 122-131.
54. You, T., Yang, N., Shu, Y. and Yin, P. (2019). A
DFT study on graphene‐based surface‐enhanced Raman spectroscopy of
Benzenedithiol adsorbed on gold/graphene. Journal of Raman Spectroscopy,
50(10): 1510-1518
55. Zainal, N., How, J. F., Choo, X. H. and Soon, C. F.
(2020). Synthesis and characterization of graphene oxide (GO) and reduced
graphene oxide (rGO) using Modified Tour’s method for sensing device
applications. 2020 IEEE Student Conference on Research and Development
(SCOReD): pp. 385-390.
56. Zhan, D. (2013). Structural and electronic properties of graphene and modified graphene.
Doctoral thesis, Nanyang Technological University, Singapore.
57. Zhang, D., Liu, J. and Xia, B.
(2016). Layer-by-layer
self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive
humidity sensing. IEEE Electron Device Letters, 37(7): 916-919.
58. Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin,
M. C., Zettl, A., Crommie, M. F., Shen, Y. R. and Wang, F. (2009). Direct
observation of a widely tunable bandgap in bilayer graphene. Nature,
459(7248): 820-823.
59. Vu, K. B., Le Phuc Nhi, T.,
Vu, V. V. and Tung Ngo, S. (2020). How
do magnetic, structural, and electronic criteria of aromaticity relate to HOMO –
LUMO gap? An evaluation for graphene quantum dot and its derivatives. Chemical
Physics, 539: 110951.
60. Zhu, Z., Chutia, A., Sahnoun, R., Koyama, M.,
Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Del Carpio, C. A.
and Miyamoto, A. (2008). Theoretical study on electronic and electrical
properties of nanostructural ZnO. Japanese Journal of Applied Physics,
47(4): 2999-3006.