Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 774 - 787

 

 

 

 

DETERMINATION OF RESIDUAL XYLAZINE BY GAS CHROMATOGRAPHY IN DRUG-SPIKED BEVERAGES FOR FORENSIC INVESTIGATION

 

(Penentuan Sisa Xilazin dengan Kromatografi Gas dalam Minuman Ditambah dengan Dadah bagi Penyiasatan Forensik)

 

Nabeesathul Sumayya Mohamed Sadiq1, Way Koon Teoh1, Kasrin Saisahas1, Apichai Phoncai2, Vanitha Kunalan3, Noor Zuhartini Md Muslim1, Warakorn Limbut1,4,5, Kah Haw Chang1, Ahmad Fahmi Lim Abdullah1*

 

1Forensic Science Programme, School of Health Sciences,

Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

2Division of Health and Applied Sciences, Faculty of Science,

Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand

3Narcotics Division, Forensic Science Analysis Centre,

Department of Chemistry, Jalan Sultan, 46661 Petaling Jaya, Selangor, Malaysia

4Center of Excellence for Trace Analysis and Biosensors (TAB-CoE)

5Center of Excellence for Innovation in Chemistry, Faculty of Science

Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand

 

*Corresponding author: fahmilim@usm.my

 

 

Received: 16 February 2022; Accepted: 15 June 2022; Published: 25 August 2022 

 

 

Abstract

The utilization of xylazine, a veterinary drug, had recently been reported in drug facilitated crimes (DFC). Victims are incapacitated after consumption of drug-spiked beverages and subsequently exposed to the risk of robbery and sexual assault. In many instances, the suspected drug-spiked beverage samples are available at the scene but the concentration level of xylazine could be very low or restricted by its recoverable amount for forensic testing. To address challenges linked to samples with low or limited recoverable amounts, this study was aimed to establish a laboratory-based gas chromatography method by detecting and quantifying xylazine in drug-spiked beverage samples appearing in liquid, droplet, and dry forms. In this study, a gas chromatography-mass spectroscopy (GC-MS) method was optimized to detect the presence of xylazine, and a gas chromatography-flame ionization detector (GC-FID) method was validated for quantification of the substance. Subsequently, xylazine from four different beverage samples in three different physical forms, simulating the possible forensic settings; were recovered and determined. A validated GC method for the determination and quantification of xylazine within 15 minutes was reported. Limit of detection (LOD) and limit of quantitation (LOQ) were reported at 0.08 µg/mL and 0.26 µg/mL, respectively. Higher recoveries of xylazine were achieved from beverage samples in liquid form (77.2-97.3%) compared to droplet (50.8% – 80.0%) and dry samples (39.8% – 66.9%). This study evidenced that limited volume of leftover beverage samples, and even the dried samples; did not hinder the recovery of the targeted drug. To conclude, a gas chromatographic technique was successfully established for the determination of residual xylazine in drug-spiked beverages that can then provide valuable investigative technique to laboratory analysts and crime scene officers in DFC investigations.

 

Keywords:  forensic science, drug-facilitated crime, xylazine, gas chromatography, drug spiked beverage

 

Abstrak

Baru-baru ini, penggunaan xilazin, sejenis ubat haiwan, telah dilaporkan dalam jenayah disebabkan dadah (DFC). Mangsa menjadi lemah selepas meminum minuman yang ditambah dengan dadah dan seterusnya terdedah kepada risiko rompakan dan gangguan seksual. Dalam kebanyakan situasi, sampel minuman yang disyaki telah dimasukkan dadah boleh dijumpai di tempat kejadian tetapi tahap kepekatan xilazin berkemungkinan amat rendah atau dibatasi oleh jumlah yang boleh diperolehi semula untuk pengujian forensik. Untuk mengatasi cabaran dalam mengaitkan sampel yang berisipadu rendah atau mempunyai kebolehpulihan yang terhad, kajian ini bertujuan untuk membangunkan satu kaedah kromatografi gas yang berasaskan makmal dengan mengesan dan menentukan kuantiti xilazin dalam sampel minuman yang dimasukkan dadah yang wujud dalam keadaan cecair, titisan dan kering. Dalam kajian ini, satu kaedah kromatografi gas-spektrometri jisim (GC-MS) telah dioptimumkan untuk mengesan kehadiran xilazin dan satu kromatografi gas-pengesanan pengionan nyalaan (GC-FID) telah ditentu-sahkan untuk pengkuantitian sebatian tersebut. Seterusnya, xilazin daripada empat sampel minuman dalam tiga keadaan fizikal berlainan, menyerupai tetapan forensik yang berkemungkinan, telah diperolehi semula dan ditentukan. Satu kaedah GC yang sah bagi penentuan dan penentuan kuantiti xilazin dalam 15 minit telah dilaporkan. Had pengesanan (LOD) dan had pengkuantitian (LOQ) telah dilaporkan masing-masing pada 0.08 μg/mL and 0.26 μg/mL. Xilazin dapat diperoleh semula daripada sampel minuman dalam keadaan cecair dengan peratusan yang lebih tinggi (77.2-97.3%) berbanding dengan sampel titisan (50.8 – 80.0%) dan sampel kering (39.8 – 66.9%). Kajian ini membuktikan bahawa isipadu sampel minuman tertinggal yang terhad dan dalam keadaan kering tidak menghalang perolehan semula dadah yang disasarkan. Kesimpulannya, satu kaedah kromatografi gas telah berjaya dibangunkan untuk menentukan sisa-sisa xilazin dalam minuman yang dimasukkan dadah. Hal ini dapat membantu teknik penyiasatan kepada juruanalisis makmal dan pegawai tempat kejadian dalam penyiasatan DFC.

 

Kata kunci:  sains forensik, jenayah disebabkan dadah, xilazin, kromatografi gas, minuman yang dimasukkan dadah

 


Graphical Abstract

 

 

 

References

1.      Spoerke, D. G., Hall, A. H., Grimes, M. J., Honea, B. N. and Rumack, B. H. (1986). Human overdose with the veterinary tranquilizer xylazine. The American Journal of Emergency Medicine, 4(3): 222-224.

2.      Elejalde, J. I., Louis, C. J., Elcuaz, R. and Pinillos, M. A. (2003). Drug abuse with inhaled xylazine. European Journal of Emergency Medicine, 10(3): 252-253.

3.      Ruiz-Colón, K., Chavez-Arias, C., Díaz-Alcalá, J. E. and Martínez, M. A. (2014). Xylazine intoxication in humans and its importance as an emerging adulterant in abused drugs: A comprehensive review of the literature. Forensic Science International, 240: 1-8.

4.      Hoffmann, U., Meister, C. M., Golle, K. and Zschiesche, M. (2001). Severe intoxication with the veterinary tranquilizer xylazine in humans. Journal of Analytical Toxicology, 25(4): 245-249.

5.      Zheng, X., Mi, X., Li, S. and Chen, G. (2013). Determination of xylazine and 2,6-xylidine in animal tissues by liquid chromatography-tandem mass spectrometry. Journal of Food Science, 78(6): T955-T959.

6.      Drug Enforcement Administration (2020). List of scheduling actions, controlled substances and regulated chemicals – 2020. Access from https://www.gpo.gov/fdsys/. [Access online 29 September 2021].

7.      Poison Act 1952 (2021). Accessed from https://www.pharmacy.gov.my/v2/en/documents/poisons-act-1952-and-regulations.html. [Access online 29 September 2021].

8.      Asean Now (2013). Xylazine enlisted as controlled medicine in Thailand. Access from https://forum.thaivisa.com/topic/674890-xylazine-enlisted-as-controlled-medicine-in-thailand/. [Access online 29 September 2021].

9.      Arthur, L. C., Martha, R-L., Paul, D. and Jim, E. R. (1997). Extra label uses of tranquilizer and general anesthetics. Journal of the American Veterinary Medical Association, 211(3): 302-304.

10.   Pépin, G. (2014). The history of drug-facilitated crimes in France. Toxicological aspects of drug-facilitated crimes. Academic Press, New York: pp. 1-8.

11.   Anderson, L. J., Flynn, A. and Pilgrim, J. L. (2017). A global epidemiological perspective on the toxicology of drug-facilitated sexual assault: a systematic review. Journal of Forensic and Legal Medicine, 47: 46-54.

12.   Gharedaghi, F., Hassanian-Moghaddam, H., Akhgari, M., Zamani, N. and Taghadosinejad, F. (2018). Drug-facilitated crime caused by drinks or foods. Egyptian Journal of Forensic Sciences, 8(1): 4-10.

13.   Tiemensma, M. and Davies, B. (2018). Investigating drug-facilitated sexual assault at a dedicated forensic centre in Cape Town, South Africa. Forensic Science International, 288: 115-122.

14.   Acikkol, M., Mercan, S. and Karadayi, S. (2009). Simultaneous determination of benzodiazepines and ketamine from alcoholic and nonalcoholic beverages by GC-MS in drug facilitated crimes. Chromatographia, 70(7-8): 1295-1298.

15.   Gautam, L., Sharratt, S. D. and Cole, M. D. (2014). Drug facilitated sexual assault: Detection and stability of benzodiazepines in spiked drinks using gas chromatography-mass spectrometry. PLoS One, 9(2): e89031.

16.   Ghobadi, M., Yamini, Y. and Ebrahimpour, B. (2014). SPE coupled with dispersive liquid–liquid microextraction followed by GC with flame ionization detection for the determination of ultra-trace amounts of benzodiazepines. Journal of Separation Science, 37: 287-294.

17.   Famiglini, G., Capriotti, F., Palma, P., Termopoli, V. and Cappiello, A. (2015). The rapid measurement of benzodiazepines in a milk-based alcoholic beverage using QuEChERS extraction and GC-MS analysis. Journal of Analytical Toxicology, 39(4): 306 – 312.

18.   Lee, K., Awang, Z., Kunalan, V., Chang, K. H. and Abdullah, A. F. L. (2016). Recovery of ketamine from ribena using liquid-liquid extraction followed by gas chromatography techniques recovery of ketamine from ribena using liquid-liquid extraction followed by gas chromatography techniques. Malaysian Journal of Forensic Sciences, 7(1): 32-37.

19.   Meyers, J. E. and Almirall, J. R. (2005). Analysis of gamma-hydroxybutyric acid (GHB) in spiked water and beverage samples using solid phase microextraction (SPME) on fiber derivatization/gas chromatography-mass spectrometry (GC/MS). Journal of Forensic Sciences, 50(1): 1-6.

20.   Meng, L., Chen, S., Zhu, B., Zhang, J., Mei, Y. Cao, J. and Zheng, K. (2020). Application of dispersive liquid-liquid microextraction and GC–MS/MS for the determination of GHB in beverages and hair. Journal of Chromatography B, 1144: 122058.

21.   Krongvorakul, J., Auparakkitanon, S., Trakulsrichai, S., Sanguanwit, P., Sueajai, J., Noumjad, N. and Wananukul, W. (2018). Use of xylazine in drug-facilitated crimes. Journal of Forensic Sciences, 63(4): 1325-1330.

22.   Andresen-Streichert, H., Iwersen-Bergmann, S., Mueller, A. and Anders, S. (2017). Attempted drug-facilitated sexual assault—xylazine intoxication in a child. Journal of Forensic Sciences, 62(1): 270-273.

23.   Elena, C. (2016). Tech officer spiked poly lecturer’s water with “love potion”. https://www.straitstimes.com/singapore/courts-crime/tech-officer-spiked-poly-lecturers-water-with-love-potion. [Access online 15 October 2021].

24.   Jeanous, J. (2019). Teen spiked stepfather’s energy drinks with cow tranquilizers to be funny”. https://metro.co.uk/2019/03/05/teen-spiked-stepfathers-energy-drinks-cow-tranquilizers-funny-8825490/. [Access online 15 October 2021].

25.   The Star (2020). Thailand: Nonthaburi water-bottle spiking cases likely aimed at sexual assault, says police. https://www.thestar.com.my/aseanplus/ aseanplus-news/2020/07/12/thailand-nonthaburi-water-bottle-spiking-cases-likely-aimed-at-sexual-assault-says-police. [Access online 15 October 2021].

26.   Chan, K. W. and Ramli, S. H. (2018). Development of an in-house HPLC method for the analysis of ecstasy-laced beverages. Egyptian Journal of Forensic Sciences, 8(1): 18.

27.   Barroso, M., Gallardo, E., Margalho, C., Devesa, N., Pimentel, J. and Vieira, D. N. (2007). Solid-phase extraction and gas chromatographic-mass spectrometric determination of the veterinary drug xylazine in human blood. Journal of Analytical Toxicology, 31(3): 165-169.

28.   Meyer, G. M. J., Meyer, M. R., Mischo, B., Schofer, O. and Maurer, H. H. (2013). Case report of accidental poisoning with the tranquilizer xylazine and the anesthetic ketamine confirmed by qualitative and quantitative toxicological analysis using GC-MS and LC-MS. Drug Testing and Analysis, 5(9-10): 785-789.

29.   Mendes, L. F., Souza e Silva, Â. R., Bacil, R. P., Serrano, S. H. P., Angnes, L. and Paixão, T. R. L. C. and de Araujo, W. R. (2019). Forensic electrochemistry: Electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochimica Acta, 295: 726-734.

30.   El-Shal, M. A. and Hendawy, H. A. M. (2019). Highly sensitive voltammetric sensor using carbon nanotube and an ionic liquid composite electrode for xylazine hydrochloride. Analytical Sciences. 35 (2): 189–194.

31.   Fiorentin, T. R., Logan, B. K., Martin, D. M., Browne, T. and Rieders, E. F. (2020). Assessment of a portable quadrupole-based gas chromatography mass spectrometry for seized drug analysis. Forensic Science International, 313: 110342.

32.   Misra, B. B., Bassey, E. and Olivier, M. (2019). Comparison of a GC-orbitrap-MS with parallel GC-FID capabilities for metabolomics of human serum. BioRxiv, 2019: 740795.

33.   Kim, J., Choi, K., & Chung, D. (2012). Sample Preparation for Capillary Electrophoretic Applications. Electrophoresis, 30(16):2905-2911

34.   Saisahas, K., Soleh, A., Promsuwan, K., Phonchai, A., Mohamed Sadiq, N. S., Teoh, W. K. Chang, K. H., Abdullah, A. F. L. and Limbut, W. (2021). A portable electrochemical sensor for detection of the veterinary drug xylazine in beverage samples. Journal of Pharmaceutical and Biomedical Analysis, 198: 113958.

35.   Hughes, H., Peters, R., Davies, G. and Griffiths, K. (2007). A study of patients presenting to an emergency department having had a “spiked drink”. Emergency Medicine Journal, 24(2): 89-91.

36.   Hoffmann, U., Meister, C., Golle, K. and Zschiesche, M. (2001). Severe intoxication with the veterinary tranquilizer xylazine in humans. Journal of Analytical Toxicology, 25(4): 245-249.

37.   Birkler, R. I., Telving, R., Ingemann-Hansen, O., Charles, A. V., Johannsen, M. and Andreasen, M. F. (2012). Screening analysis for medicinal drugs and drugs of abuse in whole blood using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS)-toxicological findings in cases of alleged sexual assault. Forensic Science International, 222(1-3): 154-161.

38.   United Nations Office on Drugs and Crime (2009). Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens a commitment to quality and continuous improvement. Vienna: United Nations Office on Drugs and Crime.

39.   Wong, S. C., Curtis, J. A. and Wingert, W. E. (2008). Concurrent detection of heroin, fentanyl, and xylazine in seven drug-related deaths reported from the Philadelphia medical examiner’s office. Journal of Forensic Sciences, 53(2): 495-498.

40.   Forrester, M. B. (2016). Xylazine exposures reported to Texas poison centers. Journal of Emergency Medicine, 51(4): 389-393.

41.   Tobias, S., Shapiro, A. M., Wu, H. and Ti, L. (2020). Xylazine identified in the unregulated drug supply in British Columbia, Canada. Canadian Journal of Addiction, 11(3): 28-32.

42.   Mashayekhi, H. A., Rezaee, M. and Khalilian, F. (2014). Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of ecstasy compounds and amphetamines in biological samples. Bulletin of the Chemical Society of Ethiopia, 28(3): 339-348.

43.   Cairns, D. (2012). Essentials of pharmaceutical chemistry. Pharmaceutical Press

44.   Sarin, R. K., Sharma, G. P., Varshney, K. M. and Rasool, S. N. (1998). Determination of diazepam in cold drinks by high-performance thin-layer chromatography. Journal of Chromatography A, 822(2): 332-335.

45.   Webb, R., Doble, P. and Dawson, M. (2007). A rapid CZE method for the analysis of benzodiazepines in spiked beverages. Electrophoresis, 28(19): 3553-3565.

46.   United State Food and Drug Administration (2021). Validation of cleaning processes (7/93). https://www.fda.gov/validation-cleaning-processes-793. [Access online 15 October 2021].

47.   Albright, J. A., Stevens, S. A. and Beussman, D. J. (2012). Detecting ketamine in beverage residues: Application in date rape detection. Drug Testing and Analysis, 4(5): 337-341.

48.   D’Aloise, P. and Chen, H. (2012). Rapid determination of flunitrazepam in alcoholic beverages by desorption electrospray ionization-mass spectrometry. Science and Justice, 52(1): 2-8.

49.   Lygrisse, J., Lapp, M., Witherspoon, K., Van Stipdonk, M. J. (2009). Detection and quantification of ketamine HCl in alcohol/water matrices using ESI-MS and LC-ESI-MS. In Proceedings: 5th Annual Symposium: Graduate Research and Scholarly Projects: p. 48-49.

50.   Norma Esmeraldo, G. I. (2011). Qualitative analysis of sodium gamma-hydroxybutyric acid (GHB) residue from plastic and glass containers using FTIR-ATR. Thesis of Master Degree, University of California, Darvis.

51.   Øiestad, E. L., Karinen, R., Christophersen, A. S., Vindenes, V. and Bachs, L. (2014). Analyses of beverage remains in drug rape cases revealing drug residues - the possibility of contamination from drug concentrated oral fluid or oral cavity contained tablets. Journal of Forensic Sciences, 59(1): 208-210.

52.   Xie, R. F., Lu, Z. Q., Chai, Y. F., Wang, X. H., Li, H. F. and Gu, J. Y. (2018). Rapid determination of heroin in adulterated commercial beverage in drug transportation cases. Chinese Journal of Analytical Chemistry, 46(10): e1880-e1886.

53.   Mittleman, R. E., Hearn, W. L. and Hime, G. W. (1998). Xylazine toxicity—literature review and report of two cases. Journal of Forensic Sciences, 43(2): 400-402.