Malaysian
Journal of Analytical Sciences Vol 26 No 4
(2022): 774 - 787
DETERMINATION OF RESIDUAL XYLAZINE BY GAS
CHROMATOGRAPHY IN DRUG-SPIKED BEVERAGES FOR FORENSIC INVESTIGATION
(Penentuan Sisa Xilazin dengan Kromatografi Gas dalam
Minuman Ditambah dengan Dadah bagi Penyiasatan Forensik)
Nabeesathul Sumayya Mohamed Sadiq1, Way
Koon Teoh1, Kasrin Saisahas1, Apichai Phoncai2,
Vanitha Kunalan3, Noor Zuhartini Md Muslim1, Warakorn
Limbut1,4,5, Kah Haw Chang1, Ahmad Fahmi Lim Abdullah1*
1Forensic
Science Programme, School of Health Sciences,
Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia
2Division
of Health and Applied Sciences, Faculty of Science,
Prince of Songkla University, Hat Yai, Songkhla, 90112,
Thailand
3Narcotics
Division, Forensic Science Analysis Centre,
Department of Chemistry, Jalan Sultan, 46661 Petaling
Jaya, Selangor, Malaysia
4Center
of Excellence for Trace Analysis and Biosensors (TAB-CoE)
5Center
of Excellence for Innovation in Chemistry, Faculty of Science
Prince of Songkla University, Hat Yai, Songkhla, 90112,
Thailand
*Corresponding author: fahmilim@usm.my
Received:
16 February 2022; Accepted: 15 June 2022; Published: 25 August 2022
Abstract
The utilization of
xylazine, a veterinary drug, had recently been reported in drug facilitated
crimes (DFC). Victims are incapacitated after consumption of drug-spiked
beverages and subsequently exposed to the risk of robbery and sexual assault.
In many instances, the suspected drug-spiked beverage samples are available at
the scene but the concentration level of xylazine could be very low or
restricted by its recoverable amount for forensic testing. To address
challenges linked to samples with low or limited recoverable amounts, this
study was aimed to establish a laboratory-based gas chromatography method by
detecting and quantifying xylazine in drug-spiked beverage samples appearing in
liquid, droplet, and dry forms. In this study, a gas chromatography-mass
spectroscopy (GC-MS) method was optimized to detect the presence of xylazine,
and a gas chromatography-flame ionization detector (GC-FID) method was
validated for quantification of the substance. Subsequently, xylazine from four
different beverage samples in three different physical forms, simulating the
possible forensic settings; were recovered and determined. A validated GC
method for the determination and quantification of xylazine within 15 minutes
was reported. Limit of detection (LOD) and limit of quantitation (LOQ) were
reported at 0.08 µg/mL and 0.26 µg/mL, respectively. Higher recoveries of
xylazine were achieved from beverage samples in liquid form (77.2-97.3%)
compared to droplet (50.8% – 80.0%) and dry samples (39.8% – 66.9%). This study
evidenced that limited volume of leftover beverage samples, and even the dried
samples; did not hinder the recovery of the targeted drug. To conclude, a gas
chromatographic technique was successfully established for the determination of
residual xylazine in drug-spiked beverages that can then provide valuable
investigative technique to laboratory analysts and crime scene officers in DFC
investigations.
Keywords: forensic science, drug-facilitated crime,
xylazine, gas chromatography, drug spiked beverage
Abstrak
Baru-baru ini, penggunaan xilazin, sejenis ubat haiwan, telah
dilaporkan dalam jenayah disebabkan dadah (DFC). Mangsa menjadi lemah selepas
meminum minuman yang ditambah dengan dadah dan seterusnya terdedah kepada
risiko rompakan dan gangguan seksual. Dalam kebanyakan situasi, sampel minuman
yang disyaki telah dimasukkan dadah boleh dijumpai di tempat kejadian tetapi
tahap kepekatan xilazin berkemungkinan amat rendah atau dibatasi oleh jumlah
yang boleh diperolehi semula untuk pengujian forensik. Untuk mengatasi cabaran
dalam mengaitkan sampel yang berisipadu rendah atau mempunyai kebolehpulihan
yang terhad, kajian ini bertujuan untuk membangunkan satu kaedah kromatografi
gas yang berasaskan makmal dengan mengesan dan menentukan kuantiti xilazin dalam
sampel minuman yang dimasukkan dadah yang wujud dalam keadaan cecair, titisan
dan kering. Dalam kajian ini, satu kaedah kromatografi gas-spektrometri jisim
(GC-MS) telah dioptimumkan untuk mengesan kehadiran xilazin dan satu
kromatografi gas-pengesanan pengionan nyalaan (GC-FID) telah ditentu-sahkan
untuk pengkuantitian sebatian tersebut. Seterusnya, xilazin daripada empat
sampel minuman dalam tiga keadaan fizikal berlainan, menyerupai tetapan
forensik yang berkemungkinan, telah diperolehi semula dan ditentukan. Satu
kaedah GC yang sah bagi penentuan dan penentuan kuantiti xilazin dalam 15 minit
telah dilaporkan. Had pengesanan (LOD) dan had pengkuantitian (LOQ) telah
dilaporkan masing-masing pada 0.08 μg/mL and 0.26 μg/mL. Xilazin
dapat diperoleh semula daripada sampel minuman dalam keadaan cecair dengan
peratusan yang lebih tinggi (77.2-97.3%) berbanding dengan sampel titisan (50.8
– 80.0%) dan sampel kering (39.8 – 66.9%). Kajian ini membuktikan bahawa
isipadu sampel minuman tertinggal yang terhad dan dalam keadaan kering tidak
menghalang perolehan semula dadah yang disasarkan. Kesimpulannya, satu kaedah
kromatografi gas telah berjaya dibangunkan untuk menentukan sisa-sisa xilazin
dalam minuman yang dimasukkan dadah. Hal ini dapat membantu teknik penyiasatan
kepada juruanalisis makmal dan pegawai tempat kejadian dalam penyiasatan DFC.
Kata kunci: sains forensik, jenayah disebabkan dadah, xilazin,
kromatografi gas, minuman yang dimasukkan dadah
Graphical Abstract
References
1.
Spoerke, D. G., Hall, A.
H., Grimes, M. J., Honea, B. N. and Rumack, B. H. (1986). Human overdose with
the veterinary tranquilizer xylazine. The American Journal of Emergency
Medicine, 4(3): 222-224.
2.
Elejalde, J. I., Louis,
C. J., Elcuaz, R. and Pinillos, M. A. (2003). Drug abuse with inhaled xylazine.
European Journal of Emergency Medicine, 10(3): 252-253.
3.
Ruiz-Colón,
K., Chavez-Arias, C., Díaz-Alcalá, J. E. and Martínez, M. A. (2014). Xylazine intoxication in
humans and its importance as an emerging adulterant in abused drugs: A
comprehensive review of the literature. Forensic Science International,
240: 1-8.
4.
Hoffmann, U., Meister,
C. M., Golle, K. and Zschiesche, M. (2001). Severe intoxication with the
veterinary tranquilizer xylazine in humans. Journal of Analytical Toxicology,
25(4): 245-249.
5.
Zheng, X., Mi, X., Li,
S. and Chen, G. (2013). Determination of xylazine and 2,6-xylidine in animal
tissues by liquid chromatography-tandem mass spectrometry. Journal of Food
Science, 78(6): T955-T959.
6.
Drug Enforcement
Administration (2020). List of scheduling actions, controlled substances and
regulated chemicals – 2020. Access from https://www.gpo.gov/fdsys/. [Access
online 29 September 2021].
7.
Poison Act 1952 (2021).
Accessed from
https://www.pharmacy.gov.my/v2/en/documents/poisons-act-1952-and-regulations.html.
[Access online 29 September 2021].
8.
Asean Now (2013).
Xylazine enlisted as controlled medicine in Thailand. Access
from https://forum.thaivisa.com/topic/674890-xylazine-enlisted-as-controlled-medicine-in-thailand/.
[Access online 29 September 2021].
9.
Arthur, L. C., Martha,
R-L., Paul, D. and Jim, E. R. (1997). Extra label uses of tranquilizer and
general anesthetics. Journal of the American Veterinary Medical Association,
211(3): 302-304.
10.
Pépin, G. (2014). The
history of drug-facilitated crimes in France. Toxicological aspects of
drug-facilitated crimes. Academic Press, New York: pp. 1-8.
11.
Anderson, L. J., Flynn,
A. and Pilgrim, J. L. (2017). A global epidemiological perspective on the
toxicology of drug-facilitated sexual assault: a systematic review. Journal
of Forensic and Legal Medicine, 47: 46-54.
12.
Gharedaghi, F.,
Hassanian-Moghaddam, H., Akhgari, M., Zamani, N. and Taghadosinejad, F. (2018).
Drug-facilitated crime caused by drinks or foods. Egyptian Journal of
Forensic Sciences, 8(1): 4-10.
13.
Tiemensma, M. and
Davies, B. (2018). Investigating drug-facilitated sexual assault at a dedicated
forensic centre in Cape Town, South Africa. Forensic Science International,
288: 115-122.
14.
Acikkol, M., Mercan, S.
and Karadayi, S. (2009). Simultaneous determination of benzodiazepines and
ketamine from alcoholic and nonalcoholic beverages by GC-MS in drug facilitated
crimes. Chromatographia, 70(7-8): 1295-1298.
15.
Gautam, L., Sharratt, S.
D. and Cole, M. D. (2014). Drug facilitated sexual assault: Detection and
stability of benzodiazepines in spiked drinks using gas chromatography-mass
spectrometry. PLoS One, 9(2): e89031.
16.
Ghobadi,
M., Yamini, Y. and Ebrahimpour, B. (2014). SPE coupled with dispersive
liquid–liquid microextraction followed by GC with flame ionization detection
for the determination of ultra-trace amounts of benzodiazepines. Journal of
Separation Science, 37: 287-294.
17.
Famiglini, G.,
Capriotti, F., Palma, P., Termopoli, V. and Cappiello, A. (2015). The rapid
measurement of benzodiazepines in a milk-based alcoholic beverage using
QuEChERS extraction and GC-MS analysis. Journal of Analytical Toxicology,
39(4): 306 – 312.
18.
Lee, K., Awang, Z.,
Kunalan, V., Chang, K. H. and Abdullah, A. F. L. (2016). Recovery of ketamine
from ribena using liquid-liquid extraction followed by gas chromatography
techniques recovery of ketamine from ribena using liquid-liquid extraction
followed by gas chromatography techniques. Malaysian Journal of Forensic
Sciences, 7(1): 32-37.
19.
Meyers, J. E. and
Almirall, J. R. (2005). Analysis of gamma-hydroxybutyric acid (GHB) in spiked
water and beverage samples using solid phase microextraction (SPME) on fiber
derivatization/gas chromatography-mass spectrometry (GC/MS). Journal of
Forensic Sciences, 50(1): 1-6.
20.
Meng, L., Chen, S., Zhu,
B., Zhang, J., Mei, Y. Cao, J. and Zheng, K. (2020). Application of dispersive
liquid-liquid microextraction and GC–MS/MS for the determination of GHB in
beverages and hair. Journal of Chromatography B, 1144: 122058.
21.
Krongvorakul, J.,
Auparakkitanon, S., Trakulsrichai, S., Sanguanwit, P., Sueajai, J., Noumjad, N.
and Wananukul, W. (2018). Use of xylazine in drug-facilitated crimes. Journal
of Forensic Sciences, 63(4): 1325-1330.
22.
Andresen-Streichert,
H., Iwersen-Bergmann, S., Mueller, A. and Anders, S. (2017). Attempted
drug-facilitated sexual assault—xylazine intoxication in a child. Journal of
Forensic Sciences, 62(1): 270-273.
23.
Elena, C. (2016). Tech
officer spiked poly lecturer’s water with “love potion”.
https://www.straitstimes.com/singapore/courts-crime/tech-officer-spiked-poly-lecturers-water-with-love-potion.
[Access online 15 October 2021].
24.
Jeanous, J. (2019). Teen
spiked stepfather’s energy drinks with cow tranquilizers to be funny”.
https://metro.co.uk/2019/03/05/teen-spiked-stepfathers-energy-drinks-cow-tranquilizers-funny-8825490/.
[Access online 15 October 2021].
25.
The Star (2020).
Thailand: Nonthaburi water-bottle spiking cases likely aimed at sexual assault,
says police. https://www.thestar.com.my/aseanplus/ aseanplus-news/2020/07/12/thailand-nonthaburi-water-bottle-spiking-cases-likely-aimed-at-sexual-assault-says-police.
[Access online 15 October 2021].
26.
Chan, K. W. and Ramli,
S. H. (2018). Development of an in-house HPLC method for the analysis of
ecstasy-laced beverages. Egyptian Journal of Forensic Sciences, 8(1):
18.
27.
Barroso,
M., Gallardo, E., Margalho, C., Devesa, N., Pimentel, J. and Vieira, D. N.
(2007). Solid-phase extraction and gas chromatographic-mass spectrometric
determination of the veterinary drug xylazine in human blood. Journal of
Analytical Toxicology, 31(3): 165-169.
28.
Meyer, G. M. J., Meyer,
M. R., Mischo, B., Schofer, O. and Maurer, H. H. (2013). Case report of
accidental poisoning with the tranquilizer xylazine and the anesthetic ketamine
confirmed by qualitative and quantitative toxicological analysis using GC-MS
and LC-MS. Drug Testing and Analysis, 5(9-10): 785-789.
29.
Mendes, L. F., Souza e
Silva, Â. R., Bacil, R. P., Serrano, S. H. P., Angnes, L. and Paixão, T. R. L.
C. and de Araujo, W. R. (2019). Forensic electrochemistry: Electrochemical
study and quantification of xylazine in pharmaceutical and urine samples. Electrochimica
Acta, 295: 726-734.
30.
El-Shal, M. A. and
Hendawy, H. A. M. (2019). Highly sensitive voltammetric sensor using carbon
nanotube and an ionic liquid composite electrode for xylazine hydrochloride.
Analytical Sciences. 35 (2): 189–194.
31.
Fiorentin, T. R., Logan,
B. K., Martin, D. M., Browne, T. and Rieders, E. F. (2020). Assessment of a
portable quadrupole-based gas chromatography mass spectrometry for seized drug
analysis. Forensic Science International, 313: 110342.
32.
Misra,
B. B., Bassey, E. and Olivier, M. (2019). Comparison of a GC-orbitrap-MS with parallel
GC-FID capabilities for metabolomics of human serum. BioRxiv, 2019:
740795.
33.
Kim, J., Choi, K., &
Chung, D. (2012). Sample Preparation for Capillary Electrophoretic
Applications. Electrophoresis, 30(16):2905-2911
34.
Saisahas, K., Soleh, A.,
Promsuwan, K., Phonchai, A., Mohamed Sadiq, N. S., Teoh, W. K. Chang, K. H.,
Abdullah, A. F. L. and Limbut, W. (2021). A portable electrochemical sensor for
detection of the veterinary drug xylazine in beverage samples. Journal of
Pharmaceutical and Biomedical Analysis, 198: 113958.
35.
Hughes, H., Peters, R.,
Davies, G. and Griffiths, K. (2007). A study of patients presenting to an
emergency department having had a “spiked drink”. Emergency Medicine Journal,
24(2): 89-91.
36.
Hoffmann, U., Meister,
C., Golle, K. and Zschiesche, M. (2001). Severe intoxication with the
veterinary tranquilizer xylazine in humans. Journal of Analytical Toxicology,
25(4): 245-249.
37.
Birkler, R. I., Telving,
R., Ingemann-Hansen, O., Charles, A. V., Johannsen, M. and Andreasen, M. F.
(2012). Screening analysis for medicinal drugs and drugs of abuse in whole
blood using ultra-performance liquid chromatography time-of-flight mass spectrometry
(UPLC-TOF-MS)-toxicological findings in cases of alleged sexual assault. Forensic
Science International, 222(1-3): 154-161.
38.
United Nations Office on
Drugs and Crime (2009). Guidance for the validation of analytical methodology
and calibration of equipment used for testing of illicit drugs in seized
materials and biological specimens a commitment to quality and continuous
improvement. Vienna: United Nations Office on Drugs and Crime.
39.
Wong, S. C., Curtis, J.
A. and Wingert, W. E. (2008). Concurrent detection of heroin, fentanyl, and
xylazine in seven drug-related deaths reported from the Philadelphia medical
examiner’s office. Journal of Forensic Sciences, 53(2): 495-498.
40.
Forrester, M. B. (2016).
Xylazine exposures reported to Texas poison centers. Journal of Emergency
Medicine, 51(4): 389-393.
41.
Tobias, S., Shapiro, A.
M., Wu, H. and Ti, L. (2020). Xylazine identified in the unregulated drug
supply in British Columbia, Canada. Canadian Journal of Addiction,
11(3): 28-32.
42.
Mashayekhi, H. A.,
Rezaee, M. and Khalilian, F. (2014). Solid-phase extraction followed by
dispersive liquid-liquid microextraction for the sensitive determination of
ecstasy compounds and amphetamines in biological samples. Bulletin of the
Chemical Society of Ethiopia, 28(3): 339-348.
43.
Cairns, D. (2012).
Essentials of pharmaceutical chemistry. Pharmaceutical Press
44.
Sarin, R. K., Sharma, G.
P., Varshney, K. M. and Rasool, S. N. (1998). Determination of diazepam in cold
drinks by high-performance thin-layer chromatography. Journal of
Chromatography A, 822(2): 332-335.
45.
Webb, R., Doble, P. and
Dawson, M. (2007). A rapid CZE method for the analysis of benzodiazepines in
spiked beverages. Electrophoresis, 28(19): 3553-3565.
46.
United State Food and
Drug Administration (2021). Validation of cleaning processes (7/93).
https://www.fda.gov/validation-cleaning-processes-793. [Access online 15
October 2021].
47.
Albright, J. A.,
Stevens, S. A. and Beussman, D. J. (2012). Detecting ketamine in beverage
residues: Application in date rape detection. Drug Testing and Analysis,
4(5): 337-341.
48.
D’Aloise, P. and Chen,
H. (2012). Rapid determination of flunitrazepam in alcoholic beverages by
desorption electrospray ionization-mass spectrometry. Science and Justice,
52(1): 2-8.
49.
Lygrisse,
J., Lapp, M., Witherspoon, K., Van Stipdonk, M. J. (2009). Detection and
quantification of ketamine HCl in alcohol/water matrices using ESI-MS and
LC-ESI-MS. In Proceedings: 5th Annual Symposium: Graduate
Research and Scholarly Projects: p. 48-49.
50.
Norma Esmeraldo, G. I.
(2011). Qualitative analysis of sodium gamma-hydroxybutyric acid (GHB) residue
from plastic and glass containers using FTIR-ATR. Thesis of Master Degree,
University of California, Darvis.
51.
Øiestad,
E. L., Karinen, R., Christophersen, A. S., Vindenes, V. and Bachs, L. (2014).
Analyses of beverage remains in drug rape cases revealing drug residues - the
possibility of contamination from drug concentrated oral fluid or oral cavity
contained tablets. Journal of Forensic Sciences, 59(1): 208-210.
52.
Xie, R. F., Lu, Z. Q.,
Chai, Y. F., Wang, X. H., Li, H. F. and Gu, J. Y. (2018). Rapid determination
of heroin in adulterated commercial beverage in drug transportation cases. Chinese
Journal of Analytical Chemistry, 46(10): e1880-e1886.
53.
Mittleman, R. E., Hearn,
W. L. and Hime, G. W. (1998). Xylazine toxicity—literature review and report of
two cases. Journal of Forensic Sciences, 43(2): 400-402.