Malaysian Journal of Analytical Sciences Vol 26 No 4 (2022): 788 - 807

 

 

 

 

MAGNETITE-GRAPHENE BASED NANOCOMPOSITES IN ELECTROCHEMISTRY: A BRIEF REVIEW ON THEIR APPLICATIONS

 

(Nanokomposit Magnetit-Grafin dalam Elektrokimia: Ulasan Ringkas dalam Aplikasinya)

 

Farhanini Yusoff1*, Karthi Suresh1,5, Azleen Rashidah Mohd Rosli1, Nur Ayunie Kamaruzaman1, Noorashikin Md Saleh2, Muggundha Raoov Ramachandran3, Nur Nadhirah Mohamad Zain4

 

1Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.

2Department of Chemical and Process Engineering,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia 

3Chemistry Department, Faculty of Science,

University of Malaya, 50603 Kuala Lumpur, Malaysia.

4Advanced Medical & Dental Institute,

Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang Malaysia.
5Adcertech Sdn Bhd,

Plot 2,Taman Meru Industrial Estate, Jelapang, 30020 Ipoh, Perak, Malaysia.

 

*Corresponding author:  farhanini@umt.edu.my

 

 

Received: 5 January 2022; Accepted: 22 March 2022; Published:  25 August 2022 

 

 

Abstract

Magnetite incorporates graphene or its derivatives, graphene oxide, or reduced graphene oxide, has received significant attention for its superior features, such as unique structure and large surface area with great number of active sites. The nanocomposite is priorly used in biosensors and biomedical for drug study. Many researchers currently opt for the nanocomposite in various electrochemistry applications as the first-rate material for said applicative fields due to its environmental-friendly nature and inexpensive production cost. This paper reviews the advantages of magnetic graphene-based material and its applications. The scope of this review is to highlight important justifications of electrochemical applications. A comprehensive discussion of the nanocomposite's physical and electrochemical properties, as well as its stability and reusability, are presented.

 

Keywords:  magnetite, graphene, electrochemical, eco-friendly, electrode

 

Abstract

Magnetit digabungkan dengan grafin atau produk derivasinya, seperti grafin oksida atau grafin oksida terturun mendapat kajian meluas kerana ciri unik komposit tersebut, misalnya kawasan permukaan yang luas dengan bilangan tapak aktif yang amat banyak. Pada asalnya, nanokomposit tersebut digunakan dalam bidang biosensor dan biomedik untuk terutamanya dalam kajian dadah. Kini, ramai penyelidik memilih nanokomposit ini dan mengaplikasikannya sebagai bahan utama dalam pelbagai bidang elektrokimia atas dasar mesra alam dan kos penghasilan yang murah. Dalam kertas kajian ini, kelebihan nanokomposit dan penggunaan dalam bidang elektrokimia diulas. Skop ulasan memberi penghujahan yang penting tentang bidang elektrokimia. Di samping itu, ciri-ciri fizikal dan elektrokimia nanokomposit tersebut dibincangkan secara mendalam selain daripada kestabilan dan kebolehgunaan semula bahan tersebut.

 

Keywords:  magnetit, grafin, elektrokimia, mesra alam, elektrod

 

 


Graphical Abstract

 

 

References

1.      Ramachandran, R., Chen, T. W., Chen, S. M., Baskar, T., Kannan, R., Elumalai, P., ... and Dinakaran, K. (2019). A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorganic Chemistry Frontier, 6(12): 3418-3439.

2.      Wang, G., Chen, J., Ding, Y., Cai, P., Yi, L., Li, Y., and Dai, L. (2021). Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chemical Society Reviews, 50(8): 4993-5061.

3.      Khan, W., Singh, A. K., Naseem, S., Husain, S., Shoeb, M. and Nadeem, M. (2018). Synthesis and magnetic dispersibility of magnetite decorated reduced graphene oxide. Nano-structures & Nano-objects, 16: 180-184.

4.      Jin, C., Feng, G., Linghu, W., Zhang, L., Shen, R., Hu, J., ... and Sheng, J. (2018). Decontamination performance of magnetic graphene oxide towards nickel ions and its underlying mechanism investigation by XAFS. Journal Molecular Liquids, 258: 48-56.

5.      Li, S., Duan, Y., Teng, Y., Fan, N. and Huo, Y. (2019). MOF-derived tremelliform Co3O4/NiO/Mn2O3 with excellent capacitive performance. Applied Surface Sciences, 478: 247-254.

6.      Yuan, R., Yuan, J., Wu, Y., Chen, L., Zhou, H. and Chen, J. (2017). Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation. Applied Surface Sciences, 416: 868-877.

7.      Lakshmi, K. B., Kumar, K. A., Reddy, J. V. and Sugunamma, V. (2019). Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and Walters-B nanofluids past a variable thickness sheet. Journal Nanofluids, 8(1): 73-83.

8.      Jiao, X., Zhang, L., Qiu, Y. and Guan, J. (2017). Comparison of the adsorption of cationic blue onto graphene oxides prepared from natural graphites with different graphitisation degrees. Colloids and Surface A: Physicochemical and Eng. Aspects, 529: 292-301.

9.      D'Souza, A., Yoon, J. H., Beaman, H., Gosavi, P., Lengyel-Zhand, Z., Sternisha, A. and Makhlynets, O. V. (2020). Nine-residue peptide self-assembles in the presence of silver to produce a self-healing, cytocompatible, antimicrobial hydrogel. ACS Applied Materials & Interfaces, 12(14): 17091-17099.

10.   Ansari, M. O., Gauthaman, K., Essa, A., Bencherif, S. A. and Memic, A. (2019). Graphene and graphene-based materials in biomedical applications. Current Medical Chemistry, 26(38): 6834-6850.

11.   Smith, A. T., LaChance, A. M., Zeng, S. and Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Sciences, 1(1): 31-47.

12.   Suresh, K. and Yusoff, F. (2020). Thermal stability and porosity of reduced graphene oxide/zinc oxide nanoparticles and their capacity as a potential oxygen reduction electrocatalyst. Malaysian Journal Analytical Sciences, 24(3): 405-412.

13.   Hussain, S., Kongi, N., Treshchalov, A., Kahro, T., Rähn, M., Merisalu, M., ... and Tammeveski, K. (2021). Enhanced oxygen reduction reaction activity and durability of Pt nanoparticles deposited on graphene-coated alumina nanofibres. Nanoscale Advances, 3(8): 2261-2268.

14.   Park, S. K., Sure, J., Vishnu, D., Jo, S. J., Lee, W. C., Ahmad, I. A. and Kim, H. K. (2021). Nano-Fe3O4/carbon nanotubes composites by one-pot microwave solvothermal method for supercapacitor applications. Energies, 14(10): 2908.

15.   He, B. and Li, J. (2019). A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite. Analytical Methods, 11(11): 1427-1435.

16.   Sammaiah, A., Huang, W. and Wang, X. (2018). Synthesis of magnetic Fe3O4/graphene oxide nanocomposites and their tribological properties under magnetic field. Materials Research Express, 5(10): 105006.

17.   Banerjee, P., Chakrabarty, S., Thapa, R., & Das, G. P. (2017). Exploring the catalytic activity of pristine T6 [100] surface for oxygen reduction reaction: A first-principles study. Applied Surface Science, 418: 56-63.

18.   Carmona-Carmona, A. J., Palomino-Ovando, M. A., Hernández-Cristobal, O., Sánchez-Mora, E. and Toledo-Solano, M. (2017). Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal. Journal of Crystal Growth, 462: 6-11.

19.   Narayanaswamy, V., Obaidat, I. M., Kamzin, A. S., Latiyan, S., Jain, S., Kumar, H., ... and Issa, B. (2019). Synthesis of graphene oxide-Fe3O4 based nanocomposites using the mechanochemical method and in vitro magnetic hyperthermia. International Journal of Molecular Sciences, 20(13): 3368.

20.   Manna, R. and Srivastava, S. K. (2021). Reduced graphene oxide/Fe3O4/polyaniline ternary composites as a superior microwave absorber in the shielding of electromagnetic pollution. ACS omega, 6(13): 9164-9175.

21.   Venkataprasad, G., Reddy, T. M., Narayana, A. L., Hussain, O. M., Shaikshavali, P., Gopal, T. V. and Gopal, P. (2019). A facile synthesis of Fe3O4-Gr nanocomposite and its effective use as electrochemical sensor for the determination of dopamine and as anode material in lithium ion batteries. Sensors and Actuators A: Physical, 293, 87-100.

22.   Wang, L., Wei, Z., Mao, M., Wang, H., Li, Y. and Ma, J. (2019). Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Materials, 16: 434-454.

23.   Shobukawa, H., Alvarado, J., Yang, Y. and Meng, Y. S. (2017). Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell. Journal of Power Sources, 359: 173-181.

24.   Costa, C.M., Lee, Y.-H., Kim, J.-H., Lee, S.-Y. and Lanceros-Méndez, S. (2019). Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Materials, 22: 346-375.

25.   Park, C. M., Heo, J., Wang, D., Su, C. and Yoon, Y. (2018). Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Applied Catalysis B: Environmental, 225: 91-99.

26.   Tian, H., Liu, H., Yang, T., Veder, J.P., Wang, G., Hu, M., Wang, S., Jaroniec, M. and Liu, J. (2017). Fabrication of core-shell, yolk-shell and hollow Fe3O4@carbon microboxes for high-performance lithium-ion batteries. Materials Chemistry Frontiers, 1: 823-830.

27.   Wang, Z., Xing, B., Zeng, H., Huang, G., Liu, X., Guo, H., Zhang, C., Cao, Y. and Chen, Z. (2021). Space-confined carbonisation strategy for synthesis of carbon nanosheets from glucose and coal tar pitch for high-performance lithium-ion batteries. Applied Surface Sciences, 547: 149228.

28.   Li, R., Zhang, F., Du, C. and Liu, J. (2012). Synthesis of Fe3O4@SnO2 core – shell nanorod film and its application as a thin-film supercapacitor electrode. Chemical Communication, 48: 5010-5012.

29.   Meng, Y., Liu, X., Xiao, M., Hu, Q., Li, Y., Li, R., ... and Zhu, F. (2019). Reduced graphene oxide@ nitrogen doped carbon with enhanced electrochemical performance in lithium ion batteries. Electrochimica Acta, 309: 228-233.

30.   Martha, S.K., Nanda, J., Zhou, H., Idrobo, J.C., Dudney, N.J., Pannala, S., Dai, S., Wang, J. and Braun, P.V. (2014). Electrode architectures for high capacity multivalent conversion compounds: iron (II and III) fluoride. RSC Advances, 4: 6730-6737.

31.   Yoon, D., Hwang, J., Chang, W. and Kim, J. (2017). Uniform one-pot anchoring of Fe3O4 to defective reduced graphene oxide for enhanced lithium storage. Chemical Engineering Journal, 317: 890-900.

32.   Wang, Y., Jin, Y., Zhao, C., Pan, E. and Jia, M. (2018). 3D graphene aerogel wrapped 3D flower-like Fe3O4 as a long stable and high rate anode material for lithium ion batteries. Journal of Electroanalytical Chemistry, 830: 106-115.

33.   Huang, X., Zhou, X., Qian, K., Zhao, D., Liu, Z. and Yu, C. (2012). A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 514: 76-80.

34.   Tian, H., Zhang, C., Wang, Q., Miao, J., Zhang, Y., Li, X., ... and Chen, Y. (2021). SiO2 aerogel@ carbon nanotube anchored on graphene sheet as anode material for lithium ion battery. Journal of Materials Science: Materials in Electronics, 32(9): 11478-11488.

35.   Zhu, K., Zhang, Y., Qiu, H., Meng, Y., Gao, Y., Meng, X., ... and Wei, Y. (2016). Hierarchical Fe3O4 microsphere/reduced graphene oxide composites as a capable anode for lithium-ion batteries with remarkable cycling performance. Journal of Alloys and Compounds, 675: 399-406.

36.   Lee, S. H., Kotal, M., Oh, J. H., Sennu, P., Park, S. H., Lee, Y. S. and Oh, I. K. (2017). Nanohole-structured, iron oxide-decorated and gelatin-functionalised graphene for high rate and high capacity Li-Ion anode. Carbon, 119: 355-364.

37.   Mhamane, D., Aravindan, V., Taneja, D., Suryawanshi, A., Game, O., Srinivasan, M. and Ogale, S. (2016). Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications. Composites Science and Technology, 130: 88-95.

38.   Shen, X., Liu, H., Cheng, X. B., Yan, C. and Huang, J. Q. (2018). Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 12: 161-175.

39.   Meng, Y., Liu, X., Xiao M., Hu, Q., Li, Y.,  Li, R., Ke, X., Ren, G. and Zhu, F. (2019). Reduced graphene oxide@nitrogen doped carbon with enhanced electrochemical performance in lithium ion batteries. Electrochimica Acta,  309: 228-233.

40.   Hameed,  M.U., Akram,  M.Y., Ali, G., Hafeez, M., Altaf, F., Ahmed, A., Shahida, S. and Bocchetta, P. (2021). Facile preparation of Fe3O4 nanoparticles/reduced graphene oxide composite as an efficient anode material for lithium-ion batteries. Coatings, 2021: 11836.

41.   Su, F. Y., Tang, R. and He, Y. B. (2017). Graphene conductive additives for lithium ion batteries: Origin, progress and prospect. Chinese Science Bulletin, 62: 3743-3756.

42.   Xiang Y, Xin L, Hu J, Li C, Qi J, Hou Y, Wei X. (2021). Advances in the applications of graphene-based nanocomposites in clean energy materials. Crystals, 11(1):47.

43.   Lee, J. G., Joshi, B. N., Lee, J. H., Kim, T. G., Kim, D. Y., Al-Deyab, S. S., ... and Yoon, S. S. (2017). Stable high-capacity lithium ion battery anodes produced by supersonic spray deposition of hematite nanoparticles and self-healing reduced graphene oxide. Electrochimica Acta, 228: 604-610.

44.   Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M. I., Begum, F., Eriksson, S. G. and Azad, A. K. (2018). Nanomaterials for solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 82: 353-368.

45.   Zhang, W., Chen, J., Li, X., Zhang, J., Li, Y., Zhao, Y., ... and Jin, X. (2020). Cuprum metal-organic-framework and polyacrylonitrile-derived Cu-NC electrocatalyst for application in zinc-air batteries. Nano, 15(01): 2050012.

46.   Kumar, S. R., Wang, J. J., Wu, Y. S., Yang, C. C. and Lue, S. J. (2020). Synergistic role of graphene oxide-magnetite nanofillers contribution on ionic conductivity and permeability for polybenzimidazole membrane electrolytes. Journal of Power Sources, 445: 227293.

47.   Papiya, F., Nandy, A., Mondal, S. and Kundu, P. P. (2017). Co/Al2O3-rGO nanocomposite as cathode electrocatalyst for superior oxygen reduction in microbial fuel cell applications: The effect of nanocomposite composition. Electrochimica Acta, 254: 1-13.

48.   Santoro, C., Arbizzani, C., Erable, B. and Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356: 225-244.

49.   Li, S., Pan, W., Wang, S., Meng, X., Jiang, C. and Irvine, J. T. (2017). Electrochemical performance of different carbon fuels on a hybrid direct carbon fuel cell. International Journal of Hydrogen Energy, 42(25): 16279-16287.

50.   Goswami, C., Hazarika, K. K. and Bharali, P. (2018). Transition metal oxide nanocatalysts for oxygen reduction reaction. Materials Science for Energy Technologies, 1(2): 117-128.

51.   Liu, X. and Hu, X. (2016). Iron oxide/oxyhydroxide decorated graphene oxides for oxygen reduction reaction catalysis: a comparison study  RSC Advance, 6: 29848.

52.   Hof, F., Liu, M., Valenti, G., Picheau, E., Paolucci, F. and Pénicaud, A. (2019). Size control of nanographene supported iron oxide nanoparticles enhances their electrocatalytic performance for the oxygen reduction and oxygen evolution reactions. The Journal of Physical Chemistry C, 123(34): 20774-20780.

53.   Ma, Y., Wang, H., Key, J., Linkov, V., Ji, S., Mao, X., Wang, Q. and Wang, R. (2014). Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst. International Journal of Hydrogen Energy, 39(27): 14777-14782.

54.   Wu, Z.-S., Yang, S., Sun, Y., Parvez, K., Feng, X. and Müllen, K. (2012). 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. Journal of the American Chemical Society, 134(22): 9082-9085.

55.   Sun, W., Wu, T., Wang, L., Yang, Z., Zhua, T., Dong, C. and Liu, G. (2019). The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings. Composites Part B: Engineering, 173: 106916

56.   Karunagaran, R., Coghlan, C., Tung, T. T., Kabiri, S., Tran, D. N., Doonan, C. J. and Losic, D. (2017). Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction. New Journal of Chemistry, 41(24): 15180-15186.

57.   Duan, Z. (2019). Application of graphene in metal corrosion protection. IOP Conference Series: Materials Science Engineering, 493: 012020.

58.   Parhizkar, N., Ramezanzadeh, B. and Shahrabi, T. (2018). Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalised graphene oxide nanosheets. Applied Surface Sciences, 439: 45-59.

59.   Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.-Y., Edgeworth, J., Li, X., Magnuson, C. W., Velamakanni, A., Piner, R. D., Kang, J., Park, J. and Runoff, R.S. (2011). Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5(2): 1321-1327.

60.   Ding, R., Chen, S., Zhou, N., Zheng, Y., Li, B. J., Gui, T. J., ... and Tian, H. W. (2019). The diffusion-dynamical and electrochemical effect mechanism of oriented magnetic graphene on zinc-rich coatings and the electrodynamics and quantum mechanics mechanism of electron conduction in graphene zinc-rich coatings. Journal of Alloys and Compounds, 784: 756-768.

61.   Zhang, L., Wu, H., Zheng, Z., He, H., Wei, M. and Huang, X. (2019). Fabrication of graphene oxide/multi-walled carbon nanotube/urushiol formaldehyde polymer composite coatings and evaluation of their physico-mechanical properties and corrosion resistance. Progress in Organic Coatings, 127: 131-139.

62.   Yu, F., Camilli, L., Wang, T., Mackenzie, D. M., Curioni, M., Akid, R. and Bøggild, P. (2018). Complete long-term corrosion protection with chemical vapor deposited graphene. Carbon, 132: 78-84.

63.   Bouanis, F. Z., Moutoussammy, P., Florea, I., Dominique, N., Chaussadent, T. and Pribat, D. (2019). Graphene nanoplatelets coating for corrosion protection of aluminum substrates. Corrosion, 75(7): 799-808.

64.   Necolau, M. I. and Pandele, A. M. (2020). Recent advances in graphene oxide-based anti-corrosive coatings: An overview. Coatings, 10(12): 1149.

65.   Nayak, P. K., Hsu, C. J., Wang, S. C., Sung, J. C. and Huang, J. L. (2013). Graphene coated Ni films: a protective coating. Thin Solid Films, 529: 312-316.

66.   Anisur, M. R., Banerjee, P. C., Easton, C. D. and Raman, R. S. (2018). Controlling hydrogen environment and cooling during CVD graphene growth on nickel for improved corrosion resistance. Carbon, 127: 131-140.

67.   Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.-Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D., Kang, J., Park, J. and Runoff, R.S. (2011). Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5(2): 1321-1327.

68.   Bagherzadeh, M., Haddadi, H. and Iranpour, M. (2016). Electrochemical evaluation and surface study of magnetite/PANI nanocomposite for carbon steel protection in 3.5% NaCl. Progress in Organic Coatings, 101: 149-160

69.   Sai, K. Jyotheender and Srivastava, C. (2019). Ni-graphene oxide composite coatings: Optimum graphene oxide for enhanced corrosion resistance. Composites Part B: Engineering, 175: 107145.

70.   Khamis, E. A., Hamdy, A. and Morsi, R.E. (2018). Magnetite nanoparticles/polyvinyl pyrrolidone stabilised system for corrosion inhibition of carbon steel. Egyptian Journal of Petroleum, 27(4): 919-926

71.   Bohdan, K., Maria A A. F. Nuno, F. F. S., Farzin, M., Alexandre, F. F. C. Kiryl, Y., António J. S. S. F. Adriana, B., Bruno, F., Rui, S., João, T.  and Florinda M. C. (2021). A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 47(3): 309-355.

72.   Mahmoudi, M., Raeissi, K., Karimzadeh, F. and Golozar, M. A.(2019). A study on corrosion behavior of graphene oxide coating produced on stainless steel by electrophoretic deposition. Surface and Coatings Technology,  372: 327-342,

73.   Manjavacas, G., & Nieto, B. (2016). Hydrogen sensors and detectors. In Compendium of Hydrogen Energy (pp. 215-234). Woodhead Publishing.

74.   Fronczak, M., Łabędź, O., Kaszuwara, W. and Bystrzejewski, M. (2018). Corrosion resistance studies of carbon-encapsulated iron nanoparticles. Journal of Materials Science, 53(5): 3805-3816.

75.   Nag, A., Mitra, A. and Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270: 177-194.

76.   Agnihotri, A. S., Varghese, A. and Nidhin, M. (2021). Transition metal oxides in electrochemical and bio sensing: A state-of-art review. Applied Surface Science Advances, 4: 100072.

77.   Yusoff, F., Rosli, A. R. and Ghadimi, H. (2021). Synthesis and characterisation of gold nanoparticles/poly3,4-ethylene-dioxythiophene/reduced-graphene oxide for electrochemical detection of dopamine. Journal of Electrochemical Society, 168(2): 026509.

78.   Ladmakhi, H. B., Chekin, F., Fathi, S. and Raoof, J. B. (2020). Electrochemical sensor based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection of allopurinol in clinical samples. Talanta, 211: 120759.

79.   Rosli, A. R. M., Yusoff, F., Loh, S. H., Yusoff, H. M., Jamil, M. M. A. and Shamsudin, S. H. (2021). Simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid at magnetic nanoparticles/reduced graphene oxide modified electrode. Jurnal Teknologi, 83(3): 85-92.

80.   Salamon, J., Sathishkumar, Y., Ramachandran, K., Lee, Y. S., Yoo, D. J. and Kim, A. R. (2015). One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosensors and Bioelectronics, 64: 269-276.

81.   Teymourian, H., Salimi, A. and Khezrian, S. (2013). Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 49: 1-8.

82.   Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A. and Lin, Y. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(10): 1027-1036.

83.   Xin, Y., Fu-bing, X., Hong-wei, L., Feng, W., Di-zhao, C. and Zhao-yang, W. (2013). A novel H2O2 biosensor based on Fe3O4–Au magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion film modified screen-printed carbon electrode. Electrochimica Acta, 109: 750-755.

84.   Sharafeldin, M., Bishop, G. W., Bhakta, S., El-Sawy, A., Suib, S. L. and Rusling, J. F. (2017). Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosensors and Bioelectronics, 91: 359-366.

85.   Häggström, Fredrik; Delsing, Jerker. (2018). IoT Energy Storage – A Forecast”. Energy Harvesting and Systems. 5 (3–4): 43-51

86.   Xu, B., Zheng, M., Tang, H., Chen, Z., Chi, Y., Wang, L., ... and Pang, H. (2019). Iron oxide-based nanomaterials for supercapacitors. Nanotechnology, 30(20), 204002.

87.   Ghanbari, R., Shabestari, M. E., Kalali, E. N., Hu, Y. and Ghorbani, S. R. (2021). Iron (II and III) Oxides/reduced graphene oxide/polypyrrole ternary nanocomposite as electrochemical supercapacitor electrode. Journal of The Electrochemical Society, 168(3): 030543.

88.   Ghasemi, S., Hosseini, S. R. and Kazemi, Z. (2018). Electrophoretic preparation of graphene-iron oxide nanocomposite as an efficient Pt-free counter electrode for dye-sensitised solar cell. Journal of Solid State Electrochemistry, 22(1): 245-253.

89.   Sharma, P. and Bhatti, T.S. (2010). A review on electrochemical double-layer capacitors. Energy Conversion Management, 51(12): 2901-2912

90.   Fleischmann, S., Mitchell, J. B., Wang, R., Zhan, C., Jiang, D. E., Presser, V. and Augustyn, V. (2020). Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chemical Reviews, 120(2020): 6738-6782.

91.   Wang, G., Zhang, L. and Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2): 797-828.

92.   Geng, L., Gao, Z. and Deng, Q. (2018). Electrochemical performance of iron oxide nanoflakes on carbon cloth under an external magnetic field. Metals, 8(11): 939.

93.   Peng, X., Yu, H., Ai, L., Li, N. and Wang, X. (2013). Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresource Technology, 2013: 144689-114692.

94.   Peng, X., Yu, H., Wang, X., Zhou, Q., Zhang, S., Geng, L., ... and Cai, Z. (2012). Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells. Bioresource Technology, 121: 450-453.

95.   Azhar, A., Yamauchi, Y., Allah, A. E., Alothman, Z. A., Badjah, A. Y., Naushad, M., ... and Zakaria, M. B. (2019). Nanoporous iron oxide/carbon composites through in-situ deposition of prussian blue nanoparticles on graphene oxide nanosheets and subsequent thermal treatment for supercapacitor applications. Nanomaterials, 9(5): 776.

96.   Xia, X. H., Chao, D. L., Zhang, Y. Q., Shen, Z. X. and Fan, H. J. (2014). Three-dimensional graphene and their integrated electrodes. Nano Today, 9(6): 785-807.

97.   Wang, Q., Jiao, L., Du, H., Wang, Y. and Yuan, H. (2014). Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. Journal of Power Sources, 245: 101-106.

98.   Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B. G., Srivastava, A., ... and Ajayan, P. M. (2011). Ultrathin planar graphene supercapacitors. Nano Letters, 11(4): 1423-1427.

99.   Papandrea, B., Xu, X., Xu, Y., Chen, C. Y., Lin, Z., Wang, G., ... and Duan, X. (2016). Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Research, 9(1): 240-248.

100. Kuila, T., Mishra, A. K., Khanra, P., Kim, N. H. and Lee, J. H. (2013). Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 5(1): 52-71.

101. Shi, X., Zhang, S., Chen, X., Tang, T. and Mijowska, E. (2017). Effect of iron oxide impregnated in hollow carbon sphere as symmetric supercapacitors. Journal of Alloys and Compounds, 726: 466-473.

102. Pu, J., Shen, L., Zhu, S., Wang, J., Zhang, W. and Wang, Z. (2014). Fe3O4@ C core–shell microspheres: synthesis, characterisation, and application as supercapacitor electrodes. Journal of Solid State Electrochemistry, 18(4): 1067-1076.

103. Horn, M., Gupta, B.,  MacLeod, J., Liu, J. and Motta N. (2019). Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials. Current Opinion in Green and Sustainable Chemistry, 17: 42-48.

104. Li, X., Huang, X., Liu, D., Wang, X., Song, S., Zhou, L. and Zhang, H. (2011). Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. The Journal of Physical Chemistry C, 115(44): 21567-21573.

105. Zhou, M., Zhai, Y. and Dong, S. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81(14): 5603-5613.

106. Gu, D., Zhou, Y., Ma, R., Wang, F., Liu, Q. and Wang, J. (2018). Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Letters, 10(2): 1-12.

107. Vinodha, G., Shima, P. D. and Cindrella, L. (2019). Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine. Journal of Materials Science, 54(5): 4073-4088.

108. Khairul, W. M., and Yusoff, F. (2019). Synthesis and characterisation of poly (3, 4-ethylenedioxythiophene) functionalised graphene with gold nanoparticles as a potential oxygen reduction electrocatalyst. Journal of Solid State Chemistry, 275: 30-37.

109. Rosli, A. R., Loh, S. H. and Yusoff, F. (2019). Synthesis and characterisation of magnetic Fe3O4/reduced graphene oxide and its application in determination of dopamine. Asian Journal of Chemistry, 31(12): 2785-2792.

110. Yusoff, F., Suresh, K. and Khairul, W. M. (2021). Synthesis and characterisation of reduced graphene oxide/iron oxide/silicon dioxide (rGO/Fe3O4/SiO2) nanocomposite as a potential cathode catalyst. Journal of Physics and Chemistry of Solids, 2021: 110551.

111. Yusoff, F., Suresh, K., Khairul, W. M. and Noorashikin, M. S. (2021). Electrocatalytic reduction of oxygen on reduced graphene oxide/iron oxide (rGO/Fe3O4) composite electrode. Russian Journal of Physical Chemistry A, 95(4): 834-842.

112. Yusoff, F. and Suresh, K. (2021). Performance of reduced graphene oxide/iron (iii) oxide/silica dioxide (rGO/Fe3O4). Sains Malaysiana, 50(7): 2017-2024.

113. Yusoff, F., Suresh, K. and Noorashikin, M. S. (2020). Synthesis and characterisation of reduced graphene oxide-iron oxide nanocomposite as a potential fuel cell electrocatalyst. In IOP Conference Series: Earth and Environmental Science, 463: p. 012078.