Malaysian
Journal of Analytical Sciences Vol 26 No 4
(2022): 788 - 807
MAGNETITE-GRAPHENE BASED NANOCOMPOSITES IN
ELECTROCHEMISTRY: A BRIEF REVIEW ON THEIR APPLICATIONS
(Nanokomposit
Magnetit-Grafin dalam Elektrokimia: Ulasan Ringkas dalam Aplikasinya)
Farhanini Yusoff1*, Karthi Suresh1,5,
Azleen Rashidah Mohd Rosli1, Nur Ayunie Kamaruzaman1,
Noorashikin Md Saleh2, Muggundha Raoov Ramachandran3, Nur
Nadhirah Mohamad Zain4
1Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu,
Malaysia.
2Department of Chemical
and Process Engineering,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor,
Malaysia
3Chemistry Department,
Faculty of Science,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
4Advanced Medical &
Dental Institute,
Universiti Sains Malaysia, Bertam 13200 Kepala Batas,
Pulau Pinang Malaysia.
5Adcertech Sdn Bhd,
Plot 2,Taman Meru Industrial Estate, Jelapang, 30020
Ipoh, Perak, Malaysia.
*Corresponding author: farhanini@umt.edu.my
Received: 5 January 2022; Accepted: 22 March 2022;
Published: 25 August 2022
Abstract
Magnetite incorporates
graphene or its derivatives, graphene oxide, or reduced graphene oxide, has
received significant attention for its superior features, such as unique
structure and large surface area with great number of active sites. The
nanocomposite is priorly used in biosensors and biomedical for drug study. Many
researchers currently opt for the nanocomposite in various electrochemistry
applications as the first-rate material for said applicative fields due to its
environmental-friendly nature and inexpensive production cost. This paper
reviews the advantages of magnetic graphene-based material and its
applications. The scope of this review is to highlight important justifications
of electrochemical applications. A comprehensive discussion of the
nanocomposite's physical and electrochemical properties, as well as its
stability and reusability, are presented.
Keywords: magnetite, graphene,
electrochemical, eco-friendly, electrode
Abstract
Magnetit digabungkan dengan
grafin atau produk derivasinya, seperti grafin oksida atau grafin oksida
terturun mendapat kajian meluas kerana ciri unik komposit tersebut, misalnya
kawasan permukaan yang luas dengan bilangan tapak aktif yang amat banyak. Pada
asalnya, nanokomposit tersebut digunakan dalam bidang biosensor dan biomedik
untuk terutamanya dalam kajian dadah. Kini, ramai penyelidik memilih
nanokomposit ini dan mengaplikasikannya sebagai bahan utama dalam pelbagai
bidang elektrokimia atas dasar mesra alam dan kos penghasilan yang murah. Dalam
kertas kajian ini, kelebihan nanokomposit dan penggunaan dalam bidang
elektrokimia diulas. Skop ulasan memberi penghujahan yang penting tentang
bidang elektrokimia. Di samping itu, ciri-ciri fizikal dan elektrokimia
nanokomposit tersebut dibincangkan secara mendalam selain daripada kestabilan
dan kebolehgunaan semula bahan tersebut.
Keywords: magnetit, grafin,
elektrokimia, mesra alam, elektrod
Graphical Abstract
References
1.
Ramachandran, R., Chen, T. W., Chen, S. M., Baskar,
T., Kannan, R., Elumalai, P., ... and Dinakaran, K. (2019). A review of the advanced
developments of electrochemical sensors for the detection of toxic and
bioactive molecules. Inorganic Chemistry Frontier, 6(12):
3418-3439.
2.
Wang, G., Chen, J., Ding, Y., Cai, P., Yi, L., Li, Y., and Dai, L.
(2021). Electrocatalysis for CO2 conversion: from fundamentals to
value-added products. Chemical Society Reviews, 50(8): 4993-5061.
3.
Khan, W., Singh, A. K., Naseem, S., Husain, S., Shoeb, M. and Nadeem, M.
(2018). Synthesis and magnetic dispersibility of magnetite decorated reduced
graphene oxide. Nano-structures & Nano-objects, 16: 180-184.
4.
Jin, C., Feng, G., Linghu, W., Zhang, L., Shen, R., Hu, J., ... and
Sheng, J. (2018). Decontamination performance of magnetic graphene oxide
towards nickel ions and its underlying mechanism investigation by XAFS. Journal
Molecular Liquids, 258: 48-56.
5.
Li, S., Duan, Y., Teng, Y., Fan, N. and Huo, Y. (2019). MOF-derived
tremelliform Co3O4/NiO/Mn2O3 with
excellent capacitive performance. Applied Surface Sciences, 478:
247-254.
6.
Yuan, R., Yuan, J., Wu, Y., Chen, L., Zhou, H. and Chen, J. (2017).
Efficient synthesis of graphene oxide and the mechanisms of oxidation and
exfoliation. Applied Surface Sciences, 416: 868-877.
7.
Lakshmi, K. B., Kumar, K. A., Reddy, J. V. and Sugunamma, V. (2019).
Influence of nonlinear radiation and cross diffusion on MHD flow of Casson and
Walters-B nanofluids past a variable thickness sheet. Journal Nanofluids,
8(1): 73-83.
8.
Jiao, X., Zhang, L., Qiu, Y. and Guan, J. (2017). Comparison of the
adsorption of cationic blue onto graphene oxides prepared from natural
graphites with different graphitisation degrees. Colloids and Surface A:
Physicochemical and Eng. Aspects, 529: 292-301.
9.
D'Souza, A., Yoon, J. H., Beaman, H., Gosavi, P., Lengyel-Zhand, Z.,
Sternisha, A. and Makhlynets, O. V. (2020). Nine-residue peptide self-assembles
in the presence of silver to produce a self-healing, cytocompatible,
antimicrobial hydrogel. ACS Applied Materials & Interfaces, 12(14):
17091-17099.
10.
Ansari, M. O., Gauthaman, K., Essa, A., Bencherif, S. A. and Memic, A.
(2019). Graphene and graphene-based materials in biomedical applications. Current
Medical Chemistry, 26(38): 6834-6850.
11.
Smith, A. T., LaChance, A. M., Zeng, S. and Sun, L. (2019). Synthesis,
properties, and applications of graphene oxide/reduced graphene oxide and their
nanocomposites. Nano Materials Sciences, 1(1): 31-47.
12.
Suresh, K. and Yusoff, F. (2020). Thermal stability and porosity of reduced
graphene oxide/zinc oxide nanoparticles and their capacity as a potential
oxygen reduction electrocatalyst. Malaysian Journal Analytical Sciences,
24(3): 405-412.
13.
Hussain, S., Kongi, N., Treshchalov, A., Kahro, T., Rähn, M., Merisalu,
M., ... and Tammeveski, K. (2021). Enhanced oxygen reduction reaction activity
and durability of Pt nanoparticles deposited on graphene-coated alumina
nanofibres. Nanoscale Advances, 3(8): 2261-2268.
14.
Park, S. K., Sure, J., Vishnu, D., Jo, S. J., Lee, W. C., Ahmad, I. A.
and Kim, H. K. (2021). Nano-Fe3O4/carbon nanotubes
composites by one-pot microwave solvothermal method for supercapacitor
applications. Energies, 14(10): 2908.
15.
He, B. and Li, J. (2019). A sensitive electrochemical sensor based on
reduced graphene oxide/Fe3O4 nanorod composites for
detection of nitrofurantoin and its metabolite. Analytical Methods,
11(11): 1427-1435.
16.
Sammaiah, A., Huang, W. and Wang, X. (2018). Synthesis of magnetic Fe3O4/graphene
oxide nanocomposites and their tribological properties under magnetic field. Materials
Research Express, 5(10): 105006.
17.
Banerjee, P., Chakrabarty, S., Thapa, R., & Das, G. P. (2017).
Exploring the catalytic activity of pristine T6 [100] surface for oxygen
reduction reaction: A first-principles study. Applied Surface Science,
418: 56-63.
18.
Carmona-Carmona, A. J., Palomino-Ovando, M. A., Hernández-Cristobal, O.,
Sánchez-Mora, E. and Toledo-Solano, M. (2017). Synthesis and characterization
of magnetic opal/Fe3O4 colloidal crystal. Journal of
Crystal Growth, 462: 6-11.
19. Narayanaswamy, V., Obaidat,
I. M., Kamzin, A. S., Latiyan, S., Jain, S., Kumar, H., ... and Issa, B.
(2019). Synthesis of graphene oxide-Fe3O4 based
nanocomposites using the mechanochemical method and in vitro magnetic
hyperthermia. International Journal of Molecular Sciences, 20(13): 3368.
20. Manna, R. and Srivastava,
S. K. (2021). Reduced graphene oxide/Fe3O4/polyaniline
ternary composites as a superior microwave absorber in the shielding of
electromagnetic pollution. ACS omega, 6(13): 9164-9175.
21. Venkataprasad, G., Reddy, T. M., Narayana, A. L.,
Hussain, O. M., Shaikshavali, P., Gopal, T. V. and Gopal, P. (2019). A facile
synthesis of Fe3O4-Gr nanocomposite and its effective use
as electrochemical sensor for the determination of dopamine and as anode
material in lithium ion batteries. Sensors and Actuators A: Physical, 293,
87-100.
22. Wang, L., Wei, Z., Mao, M., Wang, H., Li, Y. and Ma,
J. (2019). Metal oxide/graphene composite anode materials for sodium-ion
batteries. Energy Storage Materials, 16: 434-454.
23. Shobukawa, H., Alvarado, J., Yang, Y. and Meng, Y. S.
(2017). Electrochemical performance and interfacial investigation on Si
composite anode for lithium ion batteries in full cell. Journal of Power
Sources, 359: 173-181.
24. Costa, C.M., Lee, Y.-H., Kim, J.-H., Lee,
S.-Y. and Lanceros-Méndez, S. (2019). Recent advances on separator membranes
for lithium-ion battery applications: from porous membranes to solid
electrolytes. Energy Storage Materials, 22: 346-375.
25. Park, C. M., Heo, J., Wang, D., Su, C. and Yoon, Y.
(2018). Heterogeneous activation of persulfate by reduced graphene
oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of
pharmaceuticals and endocrine disrupting compounds in water. Applied
Catalysis B: Environmental, 225: 91-99.
26. Tian, H., Liu, H., Yang, T., Veder, J.P., Wang, G.,
Hu, M., Wang, S., Jaroniec, M. and Liu, J. (2017). Fabrication of core-shell,
yolk-shell and hollow Fe3O4@carbon microboxes for
high-performance lithium-ion batteries. Materials Chemistry Frontiers,
1: 823-830.
27. Wang, Z., Xing, B., Zeng, H., Huang, G., Liu,
X., Guo, H., Zhang, C., Cao, Y. and Chen, Z. (2021). Space-confined
carbonisation strategy for synthesis of carbon nanosheets from glucose and coal
tar pitch for high-performance lithium-ion batteries. Applied Surface
Sciences, 547: 149228.
28. Li, R., Zhang, F., Du, C.
and Liu, J. (2012). Synthesis
of Fe3O4@SnO2 core – shell nanorod film and
its application as a thin-film supercapacitor electrode. Chemical Communication,
48: 5010-5012.
29. Meng, Y., Liu, X., Xiao, M., Hu, Q., Li, Y., Li, R.,
... and Zhu, F. (2019). Reduced graphene oxide@ nitrogen doped carbon with
enhanced electrochemical performance in lithium ion batteries. Electrochimica
Acta, 309: 228-233.
30. Martha, S.K., Nanda, J., Zhou, H., Idrobo,
J.C., Dudney, N.J., Pannala, S., Dai, S., Wang, J. and Braun, P.V. (2014).
Electrode architectures for high capacity multivalent conversion compounds:
iron (II and III) fluoride. RSC Advances, 4: 6730-6737.
31. Yoon, D., Hwang, J., Chang, W. and Kim, J. (2017).
Uniform one-pot anchoring of Fe3O4 to defective reduced
graphene oxide for enhanced lithium storage. Chemical Engineering Journal,
317: 890-900.
32. Wang, Y., Jin, Y., Zhao, C., Pan, E. and Jia, M.
(2018). 3D graphene aerogel wrapped 3D flower-like Fe3O4
as a long stable and high rate anode material for lithium ion batteries. Journal
of Electroanalytical Chemistry, 830: 106-115.
33. Huang, X., Zhou, X., Qian, K., Zhao, D., Liu,
Z. and Yu, C. (2012). A magnetite nanocrystal/graphene composite as high
performance anode for lithium-ion batteries. Journal of Alloys and
Compounds, 514: 76-80.
34. Tian, H., Zhang, C., Wang, Q., Miao, J., Zhang, Y.,
Li, X., ... and Chen, Y. (2021). SiO2 aerogel@ carbon nanotube
anchored on graphene sheet as anode material for lithium ion battery. Journal
of Materials Science: Materials in Electronics, 32(9): 11478-11488.
35. Zhu, K., Zhang, Y., Qiu, H., Meng, Y., Gao, Y., Meng,
X., ... and Wei, Y. (2016). Hierarchical Fe3O4
microsphere/reduced graphene oxide composites as a capable anode for
lithium-ion batteries with remarkable cycling performance. Journal of Alloys
and Compounds, 675: 399-406.
36. Lee, S. H., Kotal, M., Oh, J. H., Sennu, P., Park, S.
H., Lee, Y. S. and Oh, I. K. (2017). Nanohole-structured, iron oxide-decorated
and gelatin-functionalised graphene for high rate and high capacity Li-Ion
anode. Carbon, 119: 355-364.
37. Mhamane, D., Aravindan, V., Taneja, D., Suryawanshi,
A., Game, O., Srinivasan, M. and Ogale, S. (2016). Graphene based nanocomposites
for alloy (SnO2), and conversion (Fe3O4) type
efficient anodes for Li-ion battery applications. Composites Science and
Technology, 130: 88-95.
38. Shen, X., Liu, H., Cheng, X. B., Yan, C. and Huang, J.
Q. (2018). Beyond lithium ion batteries: Higher energy density battery systems
based on lithium metal anodes. Energy Storage Materials, 12: 161-175.
39. Meng,
Y., Liu, X., Xiao M., Hu, Q., Li, Y.,
Li, R., Ke, X., Ren, G. and Zhu, F. (2019). Reduced graphene oxide@nitrogen doped carbon
with enhanced electrochemical performance in lithium ion batteries. Electrochimica
Acta, 309: 228-233.
40. Hameed,
M.U., Akram, M.Y., Ali, G.,
Hafeez, M., Altaf, F., Ahmed, A., Shahida, S. and Bocchetta, P. (2021). Facile
preparation of Fe3O4 nanoparticles/reduced graphene oxide
composite as an efficient anode material for lithium-ion batteries. Coatings,
2021: 11836.
41. Su, F. Y., Tang, R. and He, Y. B. (2017).
Graphene conductive additives for lithium ion batteries: Origin, progress and
prospect. Chinese Science Bulletin, 62: 3743-3756.
42. Xiang Y, Xin L, Hu J, Li
C, Qi J, Hou Y, Wei X. (2021). Advances in the applications of graphene-based nanocomposites in clean
energy materials. Crystals, 11(1):47.
43. Lee, J. G., Joshi, B. N., Lee, J. H., Kim, T. G., Kim,
D. Y., Al-Deyab, S. S., ... and Yoon, S. S. (2017). Stable high-capacity
lithium ion battery anodes produced by supersonic spray deposition of hematite
nanoparticles and self-healing reduced graphene oxide. Electrochimica Acta,
228: 604-610.
44. Abdalla, A. M., Hossain, S., Azad, A. T., Petra, P. M.
I., Begum, F., Eriksson, S. G. and Azad, A. K. (2018). Nanomaterials for solid
oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 82:
353-368.
45. Zhang, W., Chen, J., Li, X., Zhang, J., Li, Y., Zhao,
Y., ... and Jin, X. (2020). Cuprum metal-organic-framework and
polyacrylonitrile-derived Cu-NC electrocatalyst for application in zinc-air
batteries. Nano, 15(01): 2050012.
46. Kumar, S. R., Wang, J. J., Wu, Y. S., Yang, C. C. and
Lue, S. J. (2020). Synergistic role of graphene oxide-magnetite nanofillers
contribution on ionic conductivity and permeability for polybenzimidazole
membrane electrolytes. Journal of Power Sources, 445: 227293.
47. Papiya, F., Nandy, A., Mondal, S. and Kundu, P. P.
(2017). Co/Al2O3-rGO nanocomposite as cathode
electrocatalyst for superior oxygen reduction in microbial fuel cell
applications: The effect of nanocomposite composition. Electrochimica Acta,
254: 1-13.
48. Santoro, C., Arbizzani, C., Erable, B. and Ieropoulos, I.
(2017). Microbial fuel cells: From fundamentals to
applications. A review. Journal of Power Sources, 356: 225-244.
49. Li, S., Pan, W., Wang, S., Meng, X., Jiang, C. and
Irvine, J. T. (2017). Electrochemical performance of different carbon fuels on
a hybrid direct carbon fuel cell. International Journal of Hydrogen Energy,
42(25): 16279-16287.
50. Goswami, C., Hazarika, K. K. and Bharali, P. (2018).
Transition metal oxide nanocatalysts for oxygen reduction reaction. Materials
Science for Energy Technologies, 1(2): 117-128.
51. Liu,
X. and Hu, X. (2016). Iron oxide/oxyhydroxide decorated graphene oxides for
oxygen reduction reaction catalysis: a comparison study RSC Advance, 6: 29848.
52. Hof, F., Liu, M., Valenti, G.,
Picheau, E., Paolucci, F. and Pénicaud, A. (2019). Size control of
nanographene supported iron oxide nanoparticles enhances their electrocatalytic
performance for the oxygen reduction and oxygen evolution reactions. The
Journal of Physical Chemistry C, 123(34): 20774-20780.
53. Ma, Y., Wang, H., Key, J., Linkov, V., Ji, S.,
Mao, X., Wang, Q. and Wang, R. (2014). Ultrafine iron oxide nanoparticles
supported on N-doped carbon black as an oxygen reduction reaction catalyst. International
Journal of Hydrogen Energy, 39(27): 14777-14782.
54. Wu, Z.-S., Yang, S., Sun, Y., Parvez, K.,
Feng, X. and Müllen, K. (2012). 3D nitrogen-doped graphene aerogel-supported Fe3O4
nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. Journal
of the American Chemical Society, 134(22): 9082-9085.
55. Sun, W., Wu, T., Wang, L., Yang, Z., Zhua, T.,
Dong, C. and Liu, G. (2019). The role of graphene loading on the
corrosion-promotion activity of graphene/epoxy nanocomposite coatings. Composites
Part B: Engineering, 173: 106916
56. Karunagaran, R., Coghlan, C., Tung, T. T., Kabiri, S.,
Tran, D. N., Doonan, C. J. and Losic, D. (2017). Study of iron oxide
nanoparticle phases in graphene aerogels for oxygen reduction reaction. New
Journal of Chemistry, 41(24): 15180-15186.
57. Duan,
Z. (2019). Application
of graphene in metal corrosion protection. IOP Conference Series: Materials Science Engineering,
493: 012020.
58. Parhizkar, N., Ramezanzadeh, B. and Shahrabi, T.
(2018). Corrosion protection and adhesion properties of the epoxy coating
applied on the steel substrate pre-treated by a sol-gel based silane coating
filled with amino and isocyanate silane functionalised graphene oxide
nanosheets. Applied Surface Sciences, 439: 45-59.
59. Chen, S., Brown, L., Levendorf, M., Cai, W.,
Ju, S.-Y., Edgeworth, J., Li, X., Magnuson, C. W., Velamakanni, A., Piner, R.
D., Kang, J., Park, J. and Runoff, R.S. (2011). Oxidation resistance of
graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5(2): 1321-1327.
60. Ding, R., Chen, S., Zhou, N., Zheng, Y., Li, B. J.,
Gui, T. J., ... and Tian, H. W. (2019). The diffusion-dynamical and
electrochemical effect mechanism of oriented magnetic graphene on zinc-rich
coatings and the electrodynamics and quantum mechanics mechanism of electron
conduction in graphene zinc-rich coatings. Journal of Alloys and Compounds,
784: 756-768.
61. Zhang, L., Wu, H., Zheng, Z., He, H., Wei, M. and
Huang, X. (2019). Fabrication of graphene oxide/multi-walled carbon
nanotube/urushiol formaldehyde polymer composite coatings and evaluation of
their physico-mechanical properties and corrosion resistance. Progress in
Organic Coatings, 127: 131-139.
62. Yu, F., Camilli, L., Wang, T., Mackenzie, D. M.,
Curioni, M., Akid, R. and Bøggild, P. (2018). Complete long-term corrosion
protection with chemical vapor deposited graphene. Carbon, 132: 78-84.
63. Bouanis, F. Z., Moutoussammy, P., Florea, I., Dominique,
N., Chaussadent, T. and Pribat, D. (2019). Graphene
nanoplatelets coating for corrosion protection of aluminum substrates. Corrosion,
75(7): 799-808.
64. Necolau, M. I. and Pandele, A. M. (2020). Recent
advances in graphene oxide-based anti-corrosive coatings: An overview. Coatings,
10(12): 1149.
65. Nayak, P. K., Hsu, C. J., Wang, S. C., Sung, J. C. and
Huang, J. L. (2013). Graphene coated Ni films: a protective coating. Thin
Solid Films, 529: 312-316.
66. Anisur, M. R., Banerjee, P. C., Easton, C. D. and
Raman, R. S. (2018). Controlling hydrogen environment and cooling during CVD
graphene growth on nickel for improved corrosion resistance. Carbon,
127: 131-140.
67. Chen, S., Brown, L., Levendorf, M., Cai, W., Ju,
S.-Y., Edgeworth, J., Li, X., Magnuson, C.W., Velamakanni, A., Piner, R.D.,
Kang, J., Park, J. and Runoff, R.S. (2011). Oxidation resistance of
graphene-coated Cu and Cu/Ni alloy. ACS Nano, 5(2): 1321-1327.
68. Bagherzadeh, M., Haddadi, H. and Iranpour, M. (2016).
Electrochemical evaluation and surface study of magnetite/PANI nanocomposite
for carbon steel protection in 3.5% NaCl. Progress in Organic Coatings,
101: 149-160
69. Sai,
K. Jyotheender and Srivastava, C. (2019). Ni-graphene oxide composite coatings:
Optimum graphene oxide for enhanced corrosion resistance. Composites Part B:
Engineering, 175: 107145.
70. Khamis,
E. A., Hamdy, A. and Morsi, R.E. (2018). Magnetite nanoparticles/polyvinyl
pyrrolidone stabilised system for corrosion inhibition of carbon steel. Egyptian
Journal of Petroleum, 27(4): 919-926
71. Bohdan, K., Maria A A. F. Nuno, F. F. S.,
Farzin, M., Alexandre, F. F. C. Kiryl, Y., António J. S. S. F. Adriana, B.,
Bruno, F., Rui, S., João, T. and Florinda
M. C. (2021). A critical review on the production and application of graphene
and graphene-based materials in anti-corrosion coatings. Critical Reviews in
Solid State and Materials Sciences, 47(3): 309-355.
72. Mahmoudi, M., Raeissi, K., Karimzadeh, F. and
Golozar, M. A.(2019). A study on corrosion behavior of graphene oxide coating
produced on stainless steel by electrophoretic deposition. Surface and
Coatings Technology, 372: 327-342,
73. Manjavacas,
G., & Nieto, B. (2016). Hydrogen sensors and detectors. In Compendium of
Hydrogen Energy (pp. 215-234). Woodhead Publishing.
74. Fronczak, M., Łabędź, O., Kaszuwara, W.
and Bystrzejewski, M. (2018). Corrosion resistance studies of
carbon-encapsulated iron nanoparticles. Journal of Materials Science,
53(5): 3805-3816.
75. Nag, A., Mitra, A. and Mukhopadhyay, S. C. (2018).
Graphene and its sensor-based applications: A review. Sensors and Actuators
A: Physical, 270: 177-194.
76. Agnihotri, A. S., Varghese, A. and Nidhin, M. (2021).
Transition metal oxides in electrochemical and bio sensing: A state-of-art
review. Applied Surface Science Advances, 4: 100072.
77. Yusoff, F., Rosli, A. R. and Ghadimi, H. (2021).
Synthesis and characterisation of gold
nanoparticles/poly3,4-ethylene-dioxythiophene/reduced-graphene oxide for
electrochemical detection of dopamine. Journal of Electrochemical Society,
168(2): 026509.
78. Ladmakhi,
H. B., Chekin, F., Fathi, S. and Raoof, J. B. (2020). Electrochemical sensor
based on magnetite graphene oxide/ordered mesoporous carbon hybrid to detection
of allopurinol in clinical samples. Talanta, 211: 120759.
79. Rosli, A. R. M., Yusoff, F., Loh, S. H., Yusoff, H.
M., Jamil, M. M. A. and Shamsudin, S. H. (2021). Simultaneous electrochemical
detection of ascorbic acid, dopamine, and uric acid at magnetic nanoparticles/reduced
graphene oxide modified electrode. Jurnal Teknologi, 83(3): 85-92.
80. Salamon, J., Sathishkumar, Y., Ramachandran, K., Lee,
Y. S., Yoo, D. J. and Kim, A. R. (2015). One-pot synthesis of magnetite
nanorods/graphene composites and its catalytic activity toward electrochemical
detection of dopamine. Biosensors and Bioelectronics, 64: 269-276.
81. Teymourian, H., Salimi, A. and Khezrian, S. (2013). Fe3O4
magnetic nanoparticles/reduced graphene oxide nanosheets as a novel
electrochemical and bioeletrochemical sensing platform. Biosensors and
Bioelectronics, 49: 1-8.
82. Shao,
Y., Wang, J., Wu, H., Liu, J., Aksay, I. A. and Lin, Y. (2010). Graphene based
electrochemical sensors and biosensors: a review. Electroanalysis: An
International Journal Devoted to Fundamental and Practical Aspects of
Electroanalysis, 22(10): 1027-1036.
83. Xin,
Y., Fu-bing, X., Hong-wei, L., Feng, W., Di-zhao, C. and Zhao-yang, W. (2013).
A novel H2O2 biosensor based on Fe3O4–Au
magnetic nanoparticles coated horseradish peroxidase and graphene sheets–Nafion
film modified screen-printed carbon electrode. Electrochimica Acta, 109:
750-755.
84. Sharafeldin, M., Bishop, G. W., Bhakta, S., El-Sawy,
A., Suib, S. L. and Rusling, J. F. (2017). Fe3O4 nanoparticles
on graphene oxide sheets for isolation and ultrasensitive amperometric
detection of cancer biomarker proteins. Biosensors and Bioelectronics,
91: 359-366.
85. Häggström, Fredrik; Delsing, Jerker. (2018). IoT
Energy Storage – A Forecast”. Energy Harvesting and Systems. 5 (3–4):
43-51
86. Xu, B., Zheng, M., Tang, H., Chen, Z., Chi, Y., Wang,
L., ... and Pang, H. (2019). Iron oxide-based nanomaterials for
supercapacitors. Nanotechnology, 30(20), 204002.
87. Ghanbari, R., Shabestari, M. E., Kalali, E. N., Hu, Y.
and Ghorbani, S. R. (2021). Iron (II and III) Oxides/reduced graphene
oxide/polypyrrole ternary nanocomposite as electrochemical supercapacitor
electrode. Journal of The Electrochemical Society, 168(3): 030543.
88. Ghasemi, S., Hosseini, S. R. and Kazemi, Z. (2018).
Electrophoretic preparation of graphene-iron oxide nanocomposite as an
efficient Pt-free counter electrode for dye-sensitised solar cell. Journal
of Solid State Electrochemistry, 22(1): 245-253.
89. Sharma, P. and Bhatti, T.S. (2010). A review on
electrochemical double-layer capacitors. Energy Conversion Management,
51(12): 2901-2912
90. Fleischmann,
S., Mitchell, J. B., Wang, R., Zhan, C., Jiang, D. E., Presser, V. and
Augustyn, V. (2020). Pseudocapacitance: from fundamental understanding to high
power energy storage materials. Chemical Reviews, 120(2020): 6738-6782.
91. Wang, G., Zhang, L. and Zhang, J. (2012). A
review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews,
41(2): 797-828.
92. Geng, L., Gao, Z. and Deng, Q. (2018). Electrochemical
performance of iron oxide nanoflakes on carbon cloth under an external magnetic
field. Metals, 8(11): 939.
93. Peng, X., Yu, H., Ai, L., Li, N. and Wang, X. (2013).
Time behavior and capacitance analysis of nano-Fe3O4
added microbial fuel cells. Bioresource Technology, 2013: 144689-114692.
94. Peng,
X., Yu, H., Wang, X., Zhou, Q., Zhang, S., Geng, L., ... and Cai, Z. (2012).
Enhanced performance and capacitance behavior of anode by rolling Fe3O4
into activated carbon in microbial fuel cells. Bioresource Technology,
121: 450-453.
95. Azhar, A., Yamauchi, Y., Allah, A. E., Alothman, Z.
A., Badjah, A. Y., Naushad, M., ... and Zakaria, M. B. (2019). Nanoporous iron
oxide/carbon composites through in-situ deposition of prussian blue
nanoparticles on graphene oxide nanosheets and subsequent thermal treatment for
supercapacitor applications. Nanomaterials, 9(5): 776.
96. Xia, X. H., Chao, D. L., Zhang, Y. Q., Shen, Z. X. and
Fan, H. J. (2014). Three-dimensional graphene and their integrated electrodes. Nano
Today, 9(6): 785-807.
97. Wang, Q., Jiao, L., Du, H., Wang, Y. and Yuan, H.
(2014). Fe3O4 nanoparticles grown on graphene as advanced
electrode materials for supercapacitors. Journal of Power Sources, 245:
101-106.
98. Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V.,
Sumpter, B. G., Srivastava, A., ... and Ajayan, P. M. (2011). Ultrathin planar
graphene supercapacitors. Nano Letters, 11(4): 1423-1427.
99. Papandrea, B., Xu, X., Xu, Y., Chen, C. Y., Lin, Z.,
Wang, G., ... and Duan, X. (2016). Three-dimensional graphene framework with
ultra-high sulfur content for a robust lithium–sulfur battery. Nano Research,
9(1): 240-248.
100. Kuila, T., Mishra, A. K., Khanra, P., Kim, N. H. and
Lee, J. H. (2013). Recent advances in the efficient reduction of graphene oxide
and its application as energy storage electrode materials. Nanoscale, 5(1):
52-71.
101. Shi, X., Zhang, S., Chen, X., Tang, T. and Mijowska,
E. (2017). Effect of iron oxide impregnated in hollow carbon sphere as
symmetric supercapacitors. Journal of Alloys and Compounds, 726:
466-473.
102. Pu, J., Shen, L., Zhu, S., Wang, J., Zhang, W. and
Wang, Z. (2014). Fe3O4@ C core–shell microspheres:
synthesis, characterisation, and application as supercapacitor electrodes. Journal
of Solid State Electrochemistry, 18(4): 1067-1076.
103. Horn, M., Gupta, B.,
MacLeod, J., Liu, J. and Motta N. (2019). Graphene-based supercapacitor
electrodes: Addressing challenges in mechanisms and materials. Current
Opinion in Green and Sustainable Chemistry, 17: 42-48.
104. Li, X., Huang, X., Liu, D., Wang, X., Song, S., Zhou,
L. and Zhang, H. (2011). Synthesis of 3D hierarchical Fe3O4/graphene
composites with high lithium storage capacity and for controlled drug delivery.
The Journal of Physical Chemistry C, 115(44): 21567-21573.
105. Zhou, M., Zhai, Y. and Dong,
S. (2009). Electrochemical sensing and biosensing platform based on chemically
reduced graphene oxide. Analytical Chemistry, 81(14): 5603-5613.
106. Gu, D., Zhou, Y., Ma,
R., Wang, F., Liu, Q. and Wang, J. (2018). Facile synthesis of N-doped
graphene-like carbon nanoflakes as efficient and stable electrocatalysts for
the oxygen reduction reaction. Nano-Micro Letters, 10(2): 1-12.
107. Vinodha, G., Shima, P. D.
and Cindrella, L. (2019). Mesoporous magnetite nanoparticle-decorated graphene oxide
nanosheets for efficient electrochemical detection of hydrazine. Journal of
Materials Science, 54(5): 4073-4088.
108. Khairul, W. M., and
Yusoff, F. (2019). Synthesis and characterisation of poly (3,
4-ethylenedioxythiophene) functionalised graphene with gold nanoparticles as a
potential oxygen reduction electrocatalyst. Journal of Solid State Chemistry,
275: 30-37.
109. Rosli, A. R., Loh, S.
H. and Yusoff, F. (2019). Synthesis and characterisation of magnetic Fe3O4/reduced
graphene oxide and its application in determination of dopamine. Asian
Journal of Chemistry, 31(12): 2785-2792.
110. Yusoff, F., Suresh, K. and Khairul, W. M. (2021). Synthesis and
characterisation of reduced graphene oxide/iron oxide/silicon dioxide (rGO/Fe3O4/SiO2)
nanocomposite as a potential cathode catalyst. Journal of Physics and
Chemistry of Solids, 2021: 110551.
111. Yusoff, F., Suresh, K., Khairul, W. M. and Noorashikin, M. S. (2021).
Electrocatalytic reduction of oxygen on reduced graphene oxide/iron oxide (rGO/Fe3O4)
composite electrode. Russian Journal of Physical Chemistry A, 95(4):
834-842.
112. Yusoff, F. and Suresh, K. (2021). Performance of reduced graphene
oxide/iron (iii) oxide/silica dioxide (rGO/Fe3O4).
Sains Malaysiana, 50(7): 2017-2024.
113. Yusoff, F., Suresh, K. and Noorashikin, M. S. (2020). Synthesis and
characterisation of reduced graphene oxide-iron oxide nanocomposite as a
potential fuel cell electrocatalyst. In IOP Conference Series: Earth and
Environmental Science, 463: p. 012078.