Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 911 - 920






HEAVY METAL IN DIFFERENT SIZE FRACTIONS OF HOUSEHOLD DUST COLLECTED FROM RURAL RESIDENTIAL AREA OF SIMPANG RENGGAM, JOHOR

 

(Logam Berat dalam Pelbagai Pecahan Saiz Habuk Rumah dari Kawasan Kediaman Luar Bandar Simpang Renggam, Johor)

 

Joo Hui Tay*, Siti Aqilah Azmi, Mohd Iffat Iqbal Zul Kornain

 

Faculty of Industrial Sciences & Technology,

Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.

 

*Corresponding author:  tayjoohui@ump.edu.my

 

 

Received: 1 September 2021; Accepted: 31 October 2021; Published:  27 December 2021

 

 

Abstract

A study investigating the levels of selected heavy metals in household dust from a rural residential area was carried out. Household dust was collected from seven residential homes within the area of Simpang Renggam, Johor. All samples were sieved through a 200 μm sieve, in which two dust samples with sufficient masses (sample A and B) were further separated into four discrete fractions (<63 μm, 63-75 μm, 75-150 μm, and 150-200 μm) before analysis. Dust samples were acid digested and analyzed for the content of Al, Cr, Mn, Ni, Zn, Cu, Cd, Ba, Pb, Mg, and Fe using inductively coupled plasma - mass spectrometer (ICP-MS). Results showed that the Fe and Al were among the most abundant elements in bulk dust samples (mean concentration of 8500 mg/kg and 5100 mg/kg, respectively), and their concentrations increased with decreasing particle size. Mean concentrations of other elements ranged between 0.027 mg/kg to 2310 mg/kg. For Mn, Mg, Cu, and Zn, higher levels were measured in coarser particle size. Health risk estimation indicated that Hazard Quotient (HQ) and Hazard Index (HI) values were below than 1, representing no non-carcinogenic risk to the residents via ingestion, inhalation, and dermal absorption.

 

Keywords:  indoor dust, heavy metals, particle size distribution, rural residential area

 

Abstrak

Satu kajian mengenai kepekatan logam berat terpilih dalam habuk dari kawasan perumahan luar bandar telah dilakukan. Sampel habuk dikumpulkan dari tujuh rumah kediaman di kawasan Simpang Renggam, Johor. Semua sampel diayak melalui ayakan 200 μm, di mana dua sampel debu dengan jisim yang mencukupi (sampel A dan B) dipisahkan menjadi empat pecahan diskrit (<63 μm, 63-75 μm, 75-150 μm dan 150-200 μm) sebelum analisis. Sampel habuk dicerna asid dan dianalisis untuk kandungan Al, Cr, Mn, Ni, Zn, Cu, Cd, Ba, Pb, Mg dan Fe dengan menggunakan teknik ICP-MS. Keputusan kajian menunjukkan bahawa Fe dan Al merupakan unsur yang paling banyak dalam sampel debu <200 μm (kepekatan purata sebanyak 8500 mg/kg dan 5100 mg/kg masing-masing), dan kepekatan unsur ini meningkat dengan penurunan saiz zarah. Purata kepekatan unsur-unsur lain berada dalam julat 0.027 mg/kg dan 2310 mg/kg. Untuk Mn, Mg, Cu, dan Zn, kepekatan yang lebih tinggi diukur dalam partikel habuk yang lebih kasar. Anggaran risiko kesihatan memberi nilai Darjah Bahaya (HQ) dan Indeks Bahaya (HI) kurang daripada 1, menunjukkan bahawa pendedahan penduduk kepada habuk melalui pengambilan, penyedutan dan penyerapan kulit tidak mendatangkan risiko (secara bukan karsinogenik).

 

Kata kunci:  habuk rumah, logam berat, taburan saiz zarah, kawasan kediaman luar bandar  

 

References

1.      Lioy, P. J., Freeman, N. C. G. and Millette, J. R. (2002). Dust: A metric for use in residential and building exposure assessment and source characterization. Environmental Health Perspectives, 110(10): 969-983. 

2.      Barrio-Parra, F., De Miguel, E., Lázaro-Navas, S., Gómez, A. and Izquierdo, M. (2018). Indoor dust metal loadings: a human health risk assessment. Exposure and Health, 10(1): 41-50.

3.      Lanzerstorfer, C. (2017). Variations in the composition of house dust by particle size. Journal of Environmental Science and Health, Part A, 52(8): 770-777.

4.      Cao, Z.G., Yu, G., Chen, Y.S., Cao, Q.M., Fiedler, H., Deng, S.B., Huang, J. and Wang, B. (2012). Particle size: A missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International, 49(15): 24-30.

5.      Latif, M. T., Yong, S. M., Saad, A., Mohamad, N., Baharudin, N. H., Mokhtar, M. B. and Tahir, N. M. (2013). Composition of heavy metals in indoor dust and their possible exposure: a case study of preschool children in Malaysia. Air Quality, Atmosphere & Health, 7(2): 181-193.

6.      Praveena, S. M., Abdul Mutalib, N. S. and Aris, A. Z. (2015). Determination of heavy metals in indoor dust from primary school (Sri Serdang, Malaysia): Estimation of the health risks. Environmental Forensics, 16(3): 257-263.

7.      Tan, S. Y., Praveena, S. M., Abidin, E. Z. and Cheema, M. S. (2018). Heavy metal quantification of classroom dust in school environment and its impacts on children health from Rawang (Malaysia). Environmental Science and Pollution Research, 25(34): 34623-34635.

8.      Wahab, N. M. A., Darus, F. M., Isa, N., Sumari, S. M. and Hanafi, N. F. M. (2012). Heavy metal concentration of settled surface dust in residential building. Malaysian Journal of Analytical Sciences, 16(1): 18-23.

9.      USEPA (2011). Exposure Factors Handbook (EPA/600/R-09/052F). U.S. Environmental Protection Agency, Washinton, DC.

10.   Darus, F. M., Nasir, R. A., Sumari, S. M., Ismail, Z. S. and Omar, N. A. (2012). Heavy metals composition of indoor dust in nursery schools building. Procedia - Social and Behavioral Sciences, 38: 169-175.

11.   Latif, M. T., Othman, M. R., Kim, C. L., Murayadi, S. A. and Sahaimi, K. N. A. (2009). Composition of household dust in semi-urban areas in Malaysia. Indoor and Built Environment, 18(2): 155-161.

12.   Ardashiri, S. and Hashemi, S. E. (2018). Health risk assessment of heavy metals in indoor dust from Bushehr, Iran. Iranian Journal of Health, Safety & Environment, 5(2): 966-971. 

13.   Chattopadhyay, G., Lin, K. C.-P. and Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3): 301-307.

14.   Lin, Y., Fang, F., Wang, F. and Xu, M. (2015). Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China. Environmental Monitoring and Assessment, 187(9): 565.

15.   Rasmussen, P. E., Levesque, C., Chénier, M., Gardner, H. D., Jones-Otazo, H. and Petrovic, S. (2013). Canadian house dust study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Science of The Total Environment, 443: 520-529.

16.   Yoshinaga, J., Yamasaki, K., Yonemura, A., Ishibashi, Y., Kaido, T., Mizuno, K., Takagi, M. and Tanaka, A. (2014). Lead and other elements in house dust of Japanese residences – source of lead and health risks due to metal exposure. Environmental Pollution, 189: 223-228.

17.   Cheng, Z., Chen, L. J., Li, H. H., Lin, J. Q., Yang, Z. B., Yang, Y. X., Xu, X. X., Xian, J. R., Shao, J. R. and Zhu, X. M. (2018). Characteristics and health risk assessment of heavy metals expossure via household dust from urban area in Chengdu, China. Science of the Total Environment, 619-620: 621-629.

18.   Tong, S. T. Y. and Lam, K. C. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256: 115-123.

19.   Doyi, I. N. Y., Isley, C. F., Soltani, N. S. and Taylor, M. P. (2019). Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environmental International, 113: 105125.

20.   Beamer, P. I., Elish, C. A., Roe, D. J., Loh, M. M. and Layton, D. W. (2012). Differences in metal concentration by particle size in house dust and soil. Journal of Environmental Monitoring, 14(3): 839-844.

21.   Hassan, S. K. M. (2012). Metal concentrations and distribution in the household, stairs and entryway dust of some Egyptian homes. Atmospheric Environment, 54: 207-215.

22.   Juhasz, A. L., Weber, J., Naidu, R., Gancarz, D., Rofe, A., Todor, D. and Smith, E. (2010). Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Environmental Science & Technology, 44(13): 5240-5247.

23.   Doyi, I. N. Y., Strezov, V., Isley, C. F., Yazdanparast, T. and Taylor, M. P. (2020). The relevance of particle size distribution and bioaccessibility on human health risk assessment for trace elements measured in indoor dust. Science Total of Environment, 733: 137931.