Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 911 - 920
HEAVY METAL
IN DIFFERENT SIZE FRACTIONS OF HOUSEHOLD DUST COLLECTED FROM RURAL RESIDENTIAL
AREA OF SIMPANG RENGGAM, JOHOR
(Logam Berat dalam Pelbagai
Pecahan Saiz Habuk Rumah dari Kawasan Kediaman Luar Bandar Simpang Renggam, Johor)
Joo Hui Tay*, Siti Aqilah Azmi, Mohd Iffat Iqbal Zul Kornain
Faculty of Industrial Sciences
& Technology,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
*Corresponding author: tayjoohui@ump.edu.my
Received: 1 September 2021;
Accepted: 31 October 2021; Published: 27
December 2021
Abstract
A study investigating the levels of selected
heavy metals in household dust from a rural residential area was carried out.
Household dust was collected from seven residential homes within the area of
Simpang Renggam, Johor. All samples were sieved through a 200 μm sieve, in
which two dust samples with sufficient masses (sample A and B) were further
separated into four discrete fractions (<63 μm, 63-75 μm, 75-150
μm, and 150-200 μm) before analysis. Dust samples were acid digested
and analyzed for the content of Al,
Cr, Mn, Ni, Zn, Cu, Cd, Ba, Pb, Mg, and Fe using inductively coupled plasma -
mass spectrometer (ICP-MS). Results showed that the Fe and Al were among the
most abundant elements in bulk dust samples (mean concentration of 8500 mg/kg and 5100
mg/kg, respectively), and their concentrations increased with decreasing particle size. Mean
concentrations of other elements ranged between 0.027 mg/kg to 2310 mg/kg. For Mn, Mg, Cu, and Zn, higher levels were
measured in coarser particle size. Health
risk estimation indicated that Hazard Quotient (HQ) and Hazard Index (HI) values were below than 1,
representing no
non-carcinogenic risk to the residents via ingestion, inhalation, and dermal
absorption.
Keywords: indoor
dust, heavy metals, particle size distribution, rural residential area
Abstrak
Satu kajian mengenai kepekatan logam berat terpilih dalam
habuk dari kawasan perumahan luar bandar telah dilakukan. Sampel habuk
dikumpulkan dari tujuh rumah kediaman di kawasan Simpang Renggam, Johor. Semua sampel
diayak melalui ayakan 200 μm, di mana dua sampel debu dengan jisim yang
mencukupi (sampel A dan B) dipisahkan menjadi empat pecahan diskrit (<63
μm, 63-75 μm, 75-150 μm dan 150-200 μm) sebelum analisis.
Sampel habuk dicerna asid dan dianalisis untuk kandungan Al, Cr, Mn, Ni, Zn,
Cu, Cd, Ba, Pb, Mg dan Fe dengan menggunakan teknik ICP-MS. Keputusan kajian
menunjukkan bahawa Fe dan Al merupakan unsur yang paling banyak dalam sampel
debu <200 μm (kepekatan
purata sebanyak 8500 mg/kg dan 5100 mg/kg masing-masing), dan kepekatan unsur
ini meningkat dengan penurunan saiz zarah. Purata kepekatan unsur-unsur lain
berada dalam julat 0.027 mg/kg dan 2310 mg/kg. Untuk Mn, Mg, Cu, dan Zn,
kepekatan yang lebih tinggi diukur dalam partikel habuk yang lebih kasar. Anggaran
risiko kesihatan memberi nilai Darjah Bahaya (HQ) dan Indeks Bahaya (HI) kurang
daripada 1, menunjukkan bahawa pendedahan penduduk kepada habuk melalui
pengambilan, penyedutan dan penyerapan kulit tidak mendatangkan risiko (secara
bukan karsinogenik).
Kata kunci: habuk rumah, logam berat,
taburan saiz zarah, kawasan kediaman luar bandar
References
1.
Lioy, P. J., Freeman, N. C. G. and Millette, J.
R. (2002). Dust: A metric for use in residential and building exposure
assessment and source characterization. Environmental
Health Perspectives, 110(10): 969-983.
2.
Barrio-Parra, F., De Miguel, E., Lázaro-Navas,
S., Gómez, A. and Izquierdo, M. (2018). Indoor dust metal loadings: a human
health risk assessment. Exposure and
Health, 10(1): 41-50.
3.
Lanzerstorfer, C. (2017). Variations in the
composition of house dust by particle size. Journal
of Environmental Science and Health, Part A, 52(8): 770-777.
4.
Cao, Z.G., Yu, G., Chen, Y.S., Cao, Q.M.,
Fiedler, H., Deng, S.B., Huang, J. and Wang, B. (2012). Particle size: A
missing factor in risk assessment of human exposure to toxic chemicals in
settled indoor dust. Environment
International, 49(15): 24-30.
5.
Latif, M. T., Yong, S. M., Saad, A., Mohamad,
N., Baharudin, N. H., Mokhtar, M. B. and Tahir, N. M. (2013). Composition of
heavy metals in indoor dust and their possible exposure: a case study of
preschool children in Malaysia. Air
Quality, Atmosphere & Health, 7(2):
181-193.
6.
Praveena, S. M., Abdul Mutalib, N. S. and Aris,
A. Z. (2015). Determination of heavy metals in indoor dust from primary school
(Sri Serdang, Malaysia): Estimation of the health risks. Environmental Forensics, 16(3):
257-263.
7.
Tan, S. Y., Praveena, S. M., Abidin, E. Z. and Cheema,
M. S. (2018). Heavy metal quantification of classroom dust in school
environment and its impacts on children health from Rawang (Malaysia). Environmental Science and Pollution
Research, 25(34):
34623-34635.
8.
Wahab, N. M. A., Darus, F. M., Isa, N., Sumari,
S. M. and Hanafi, N. F. M. (2012). Heavy metal concentration of settled surface
dust in residential building. Malaysian
Journal of Analytical Sciences, 16(1):
18-23.
9.
USEPA (2011). Exposure Factors Handbook (EPA/600/R-09/052F). U.S. Environmental
Protection Agency, Washinton, DC.
10.
Darus, F. M., Nasir, R. A., Sumari, S. M.,
Ismail, Z. S. and Omar, N. A. (2012). Heavy metals composition of indoor dust
in nursery schools building. Procedia -
Social and Behavioral Sciences, 38:
169-175.
11.
Latif, M. T., Othman, M. R., Kim, C. L.,
Murayadi, S. A. and Sahaimi, K. N. A. (2009). Composition of household dust in
semi-urban areas in Malaysia. Indoor and
Built Environment, 18(2): 155-161.
12.
Ardashiri, S. and Hashemi,
S. E. (2018). Health risk assessment of heavy metals in indoor dust from Bushehr,
Iran. Iranian Journal of Health, Safety
& Environment, 5(2): 966-971.
13.
Chattopadhyay, G., Lin, K. C.-P. and Feitz, A.
J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93(3): 301-307.
14. Lin,
Y., Fang, F., Wang, F. and Xu, M. (2015). Pollution distribution and health
risk assessment of heavy metals in indoor dust in Anhui rural, China. Environmental Monitoring and Assessment, 187(9): 565.
15.
Rasmussen, P. E., Levesque, C., Chénier, M.,
Gardner, H. D., Jones-Otazo, H. and Petrovic, S. (2013). Canadian house dust
study: Population-based concentrations, loads and loading rates of arsenic,
cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Science of The Total Environment, 443: 520-529.
16.
Yoshinaga, J., Yamasaki, K., Yonemura, A.,
Ishibashi, Y., Kaido, T., Mizuno, K., Takagi, M. and Tanaka, A. (2014). Lead
and other elements in house dust of Japanese residences – source of lead and
health risks due to metal exposure. Environmental
Pollution, 189: 223-228.
17.
Cheng, Z., Chen, L. J., Li, H. H., Lin, J. Q.,
Yang, Z. B., Yang, Y. X., Xu, X. X., Xian, J. R., Shao, J. R. and Zhu, X. M.
(2018). Characteristics and health risk assessment of heavy metals expossure
via household dust from urban area in Chengdu, China. Science of the Total
Environment, 619-620: 621-629.
18.
Tong, S. T. Y. and Lam, K. C. (2000). Home sweet
home? A case study of household dust contamination in Hong Kong. Science of
the Total Environment, 256: 115-123.
19.
Doyi, I. N. Y., Isley, C. F., Soltani, N. S. and
Taylor, M. P. (2019). Human exposure and risk associated with trace element
concentrations in indoor dust from Australian homes. Environmental
International, 113: 105125.
20.
Beamer, P. I., Elish, C. A., Roe, D. J., Loh, M.
M. and Layton, D. W. (2012). Differences in metal concentration by particle
size in house dust and soil. Journal of
Environmental Monitoring, 14(3):
839-844.
21.
Hassan, S. K. M. (2012). Metal concentrations
and distribution in the household, stairs and entryway dust of some Egyptian
homes. Atmospheric Environment, 54: 207-215.
22.
Juhasz, A. L., Weber, J., Naidu, R., Gancarz,
D., Rofe, A., Todor, D. and Smith, E. (2010). Determination of cadmium relative
bioavailability in contaminated soils and its prediction using in vitro
methodologies. Environmental Science
& Technology, 44(13): 5240-5247.
23.
Doyi, I. N. Y., Strezov, V., Isley, C. F.,
Yazdanparast, T. and Taylor, M. P. (2020). The relevance of particle size
distribution and bioaccessibility on human health risk assessment for trace
elements measured in indoor dust. Science
Total of Environment, 733:
137931.