Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 895 - 910

 

 

 

 

DETERMINATION OF SODIUM HYDROXIDE CONCENTRATION UNDER HETEROGENEOUS CONDITIONS FOR THE PREPARATION OF N-CARBOXYMETHYL CHITOSAN

 

(Penentuan Kepekatan Natrium Hidroksida dalam Keadaan Heterogen bagi Penghasilan N-Karboksimetil Kitosan)

 

Nurul Adilah Rodzali and Nadhratun Naiim Mobarak*

 

Department of Chemical Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  nadhratunnaiim@ukm.edu.my

 

 

Received: 3 September 2021; Accepted: 27 October 2021; Published:  27 December 2021

 

 

Abstract

N-carboxymethyl chitosan (N-CMC) is one of the promising chitosan derivatives which has been used to improve the limitation of chitosan and can be synthesized via direct alkylation in the presence of base. In this work, the effect of sodium hydroxide concentration under heterogeneous conditions has been investigated to obtained N-CMC. The concentration of sodium hydroxide (NaOH) was varied from 1.5 M to 7.5 M. This research showed that the substitution site of chitosan is affected by the concentration of NaOH. The results revealed that N-CMC was successfully synthesized at higher NaOH concentration, 6.0 M, and 7.5 M under heterogeneous conditions. The presence of peak at 1321 cm-1 and 3.2 ppm from Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy, respectively, proving the carboxymethyl group substitution occurred at amino (NH2) site. X-ray diffraction (XRD) analysis showed insignificant differences in degree of crystallinity of N-CMC at both NaOH concentrations. However, Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) revealed that obtained N-CMC possessed distinct thermal properties as the glass transition temperature of 6.0 M was lower than 7.5 M NaOH. Therefore, the selection of NaOH concentration in N-CMC production must be determined according to the intended functional application.

 

Keywords:  N-carboxymethyl chitosan, N-substitution, heterogeneous conditions, NaOH concentration

 

Abstrak

N-karboksimetil kitosan (N-CMC) merupakan salah satu terbitan kitosan yang telah digunakan bagi menambahbaik kekurangan kitosan dan boleh disintesis melalui pengakilan secara terus dengan kehadiran bes. Dalam kajian ini, kesan kepekatan natrium hidroksida (NaOH) dalam keadaan heterogen telah dikaji untuk menghasilkan N-CMC. Kepekatan natrium hidroksida (NaOH) dibezakan daripada 1.5 M hingga 7.5 M. Kajian ini menunjukkan tapak penggantian pada kitosan dipengaruhi oleh kepekatan NaOH. Hasil kajian menunjukkan N-CMC telah berjaya disintesis pada kepekatan yang lebih tinggi, 6.0 M and 7.5 M dalam keadaan heterogen. Kehadiran puncak pada 1321 cm-1 dan 3.2 ppm masing-masing pada spektroskopi inframerah transformasi Fourier (FTIR) dan resonans magnet nukleus 1H (NMR), membuktikan penukargantian kumpulan karboksimetil berlaku pada tapak amina (NH2). Analisis pembelauan sinar-X (XRD) menunjukkan perubahan yang tidak ketara bagi darjah kehabluran N-CMC pada kedua-dua kepekatan NaOH. Walau bagaimanapun, analisis termogravimetri (TGA) dan kalorimetri pengimbasan pembezaan (DSC) menunjukkan N-CMC yang dihasilkan mempunyai sifat terma yang berbeza dimana suhu peralihan kaca bagi 6.0 M lebih rendah berbanding 7.5 M NaOH. Oleh itu, pemilihan kepekatan NaOH dalam penghasilan N-CMC ditentukan berdasarkan aplikasi yang akan digunakan.

 

Kata kunci:  N-karboksimetil kitosan, penggantian-N, keadaan heterogen, kepekatan NaOH

 

References

1.      Alves, N. M. and Mano, J. F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 43(5): 401-414.

2.      Tzaneva, D., Simitchiev, A., Petkova, N., Nenov, V., Stoyanova, A. and Denev, P. (2017). Synthesis of carboxymethyl chitosan and its rheological behaviour in pharmaceutical and cosmetic emulsions. Journal Applied Pharmaceutical Science, 7(10): 70-78.

3.      Madera-Santana, T. J., Herrera-Méndez, C. H. and Rodríguez-Núñez, J. R. (2018). An overview of the chemical modifications of chitosan and their advantages. Green Materials, 6(4): 131-142.

4.      Miranda, M. E. S., Marcolla, C., Rodrígues, C. A., Wilhelm, H. M., Sierakowski, M. R., Bresolin, T. M. B. and de Freitas, R. A. (2006). Chitosan and N‐carboxymethyl chitosan: I. The role of N‐carboxymethylation of chitosan in the thermal stability and dynamic mechanical properties of its films. Polymer international, 55(8): 961-969.

5.      Andreica, B. I., Cheng, X. and Marin, L. (2020). Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 2020: 110016.

6.      Klinkesorn, U. (2013). The role of chitosan in emulsion formation and stabilization. Food Reviews International, 29(4): 371-393.

7.      An, N. T., Dong, N. T. and Le Dung, P. (2009). Water-soluble N-carboxymethylchitosan derivatives: Preparation, characteristics, and its application. Carbohydrate Polymers, 75(3): 489-497.

8.      Skorik, Y. A., Gomes, C. A., Vasconcelos, M. T. S. and Yatluk, Y. G. (2003). N-(2-Carboxyethyl) chitosans: regioselective synthesis, characterisation and protolytic equilibria. Carbohydrate research, 338(3): 271- 276.

9.      Sahariah, P., Árnadóttir, B. and Másson, M. (2016). Synthetic strategy for selective N-modified and O-modified PEGylated chitosan derivatives. European Polymer Journal, 81: 53-63.

10.   Salehuddin, N. E. A., Rodzali, N. A., Ku Bulat, K. H. and Mobarak, N. N. (2021). Site-selective carboxymethylation of chitosan under heterogeneous conditions. Malaysian Journal of Analytical Sciences, 25(3): 376-387.

11.   Rahman, M., Hasan, M., Nitai, A. S., Nam, S., Karmakar, A. K., Ahsan, Shiddiky, M. J. A. and Ahmed, M. B. (2021). Recent developments of carboxymethyl cellulose. Polymers13(8): 1345.

12.   Heinze, T. and Pfeiffer, K. (1999). Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie266(1): 37-45.

13.   Chen, X. G. and Park, H. J. (2003). Chemical characteristics of O-carboxymethyl chitosan related to the preparation conditions. Carbohydrate Polymers, 53(4): 355-359.

14.   Elomaa, M., Asplund, T., Soininen, P., Laatikainen, R., Peltonen, S., Hyvärinen, S. and Urtti, A. (2004). Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydrate Polymers, 57(3): 261-267.

15.   Pushpamalar, V., Langford, S. J., Ahmad, M. and Lim, Y. Y. (2006). Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers 64(2): 312-318.

16.   Aggeryd, I. and Olin, Å. (1985). Determination of the degree of substitution of sodium carboxymethylcellulose by potentiometric titration and use of the extended henderson-hasselbalch equation and the simplex method for the evaluation. Talanta, 32(8): 645-649.

17.   Liu, J., Zhang, X., Kennedy, J. F., Jiang, M., Cai, Q. and Wu, X. (2019). Chitosan induces resistance to tuber rot in stored potato caused by Alternaria tenuissimaInternational Journal of Biological Macromolecules, 140: 851-857.

18.   Mobarak, N. N., Ahmad, A., Abdullah, M. P., Ramli, N. and Rahman, M. Y. A. (2013). Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte. Electrochimica Acta, 92:161-167.

19.   Liang, X., Wang, H., Tian, H., Luo, H. and Chang, J. (2008). Synthesis, structure and properties of novel quaternized carboxymethyl chitosan with drug loading capacity. Acta Physico-Chimica Sinica, 24(2): 223-229.

20.   Doshi, B., Repo, E., Heiskanen, J. P., Sirviö, J. A. and Sillanpää, M. (2017). Effectiveness of N, O-carboxymethyl chitosan on destabilization of marine diesel, diesel and marine-2t oil for oil spill treatment. Carbohydrate Polymers, 167: 326-336.

21.   Bukzem, A. L., Signini, R., Dos Santos, D. M., Lião, L. M. and Ascheri, D. P. R. (2016). Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. International Journal of Biological Macromolecules, 85: 615-624.

22.   Mourya, V. K., Inamdar, N. N. and Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters, 1 (1): 11 – 33.

23.   Jimtaisong, A. and Saewan, N. (2014). Utilization of carboxymethyl chitosan in cosmetics. International Journal of Cosmetic Science, 36(1): 12-21.

24.   Abreu, F. R. D. and Campana-Filho, S. P. (2005). Preparation and characterization of carboxymethylchitosan. Polímeros, 15(2): 79-83.

25.   Hjerde, R. J. N., Vårum, K. M., Grasdalen, H., Tokura, S. and Smidsrød, O. (1997). Chemical composition of O-(carboxymethyl)-chitins in relation to lysozyme degradation rates. Carbohydrate Polymers, 34 (3):131-139.

26.   Muzzarelli, R. A., Ilari, P. and Petrarulo, M. (1994). Solubility and structure of N-carboxymethylchitosan. International Journal of Biological Macromolecules, 16(4): 177-180.

27.   Klinkesorn, U. (2013). The role of chitosan in emulsion formation and stabilization. Food Reviews International, 29(4): 371-393.

28.   Jaidee, A., Rachtanapun, P. and Luangkamin, S. (2012). 1H-NMR analysis of degree of substitution in N, O-carboxymethyl chitosan from various chitosan sources and types. Advanced Materials Research, 506: 158 – 161.

29.   Zong, Z., Kimura, Y., Takahashi, M. and Yamane, H. (2000). Characterization of chemical and solid-state structures of acylated chitosans. Polymer, 41(3): 899-906.

30.   Bono, A., Ying, P. H., Yan, F. Y., Muei, C. L., Sarbatly, R. and Krishnaiah, D. (2009). Synthesis and characterization of carboxymethyl cellulose from palm kernel cake. Advances in Natural and Applied Sciences, 3(1): 5-12.

31.   Jiang, M., Wang, K., Kennedy, J. F., Nie, J., Yu, Q. and Ma, G. (2010). Preparation and characterization of water-soluble chitosan derivative by Michael addition reaction. International Journal of Biological Macromolecules, 47(5): 696-699.

32.   Kurniasih, M., Purwati, P., Hermawan, D. and Zaki, M. (2014). Optimum conditions for the synthesis of high solubility carboxymethyl chitosan. Malaysian Journal of Fundamental and Applied Sciences, 10(4): 189-194.

33.   Pang, H. T., Chen, X. G., Park, H. J., Cha, D. S. and Kennedy, J. F. (2007). Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous systems. Carbohydrate Polymers, 69(3): 419-425.

34.   Kittur, F. S., Prashanth, K. H., Sankar, K. U. and Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate polymers, 49(2): 185-193.

35.   Shinde, U., Ahmed, M. H. and Singh, K. (2013). Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for open angle glaucoma. Journal of Drug Delivery, 2013: 562727.

36.   Acosta-Ferreira, S., Castillo, O. S., Madera-Santana, J. T., Mendoza-García, D. A., Núñez-Colín, C. A., Grijalva-Verdugo, C., Villa-Lerma. A. G., Morales-Vargas. A. T. and Rodríguez-Núñez, J. R. (2020). Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnology Reports, 28: e00554.

37.   Kamari, A. and Yusoff, S. N. M. (2019). N-octyl chitosan derivatives as amphiphilic carrier agents for herbicide formulations. Open Chemistry, 17(1): 365-380.

38.   Kasaai, M. R., Arul, J. and Charlet, G. (2013). Fragmentation of chitosan by acids. The Scientific World Journal, 2013: 508540.

39.   Osorio-Madrazo, A., David, L., Trombotto, S., Lucas, J. M., Peniche-Covas, C. and Domard, A. (2010). Kinetics study of the solid-state acid hydrolysis of chitosan: Evolution of the crystallinity and macromolecular structure. Biomacromolecules, 11(5): 1376-1386.

40.   Franca, E. F., Lins, R. D., Freitas, L. C. and Straatsma, T. P. (2008). Characterization of chitin and chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation 4(12): 2141-2149.

41.   Brza, M. A., Aziz, S. B., Nofal, M. M., Saeed, S. R., Al-Zangana, S., Karim, W. O., Hussen, S.  A., Abdulwahid, R.T. and Kadir, M. F. Z. (2020). Drawbacks of low lattice energy ammonium salts for ion-conducting polymer electrolyte preparation: structural, morphological, and electrical characteristics of CS:PEO:NH4BF4-based polymer blend electrolytes. Polymers 12(9): 1885-1906.

42.   Katugampola, P., Winstead, C. and Adeleke, A. (2014). Thermal stability of carboxymethyl chitosan varying the degree of substitution. International Journal of Pharmaceutical Science Invention, 3(5): 42- 48.

43.   Samuels, R. J. (1981). Solid state characterization of the structure of chitosan films. Journal of Polymer Science: Polymer Physics Edition 19(7): 1081-1105.