Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 895 - 910
DETERMINATION
OF SODIUM HYDROXIDE CONCENTRATION UNDER HETEROGENEOUS CONDITIONS FOR THE
PREPARATION OF N-CARBOXYMETHYL CHITOSAN
(Penentuan
Kepekatan Natrium Hidroksida dalam Keadaan Heterogen bagi Penghasilan N-Karboksimetil Kitosan)
Nurul Adilah Rodzali and Nadhratun Naiim Mobarak*
Department of Chemical Sciences, Faculty of Science and Technology
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: nadhratunnaiim@ukm.edu.my
Received: 3 September 2021;
Accepted: 27 October 2021; Published: 27
December 2021
Abstract
N-carboxymethyl chitosan (N-CMC) is one of the promising chitosan
derivatives which has been used to improve the limitation of chitosan and can
be synthesized via direct alkylation
in the presence of base. In this work, the effect of sodium hydroxide concentration
under heterogeneous conditions has been investigated to obtained N-CMC. The
concentration of sodium hydroxide (NaOH) was varied from 1.5 M to 7.5 M. This
research showed that the substitution site of chitosan is affected by the
concentration of NaOH. The results revealed that N-CMC was successfully
synthesized at higher NaOH concentration, 6.0 M, and 7.5 M under heterogeneous
conditions. The presence of peak at 1321 cm-1 and 3.2 ppm from
Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance
(NMR) spectroscopy, respectively, proving the carboxymethyl group substitution
occurred at amino (NH2) site. X-ray diffraction (XRD) analysis
showed insignificant differences in degree of crystallinity of N-CMC at both
NaOH concentrations. However, Thermogravimetry analysis (TGA) and differential
scanning calorimetry (DSC) revealed that obtained N-CMC possessed distinct
thermal properties as the glass transition temperature of 6.0 M was lower than
7.5 M NaOH. Therefore, the selection of NaOH concentration in N-CMC production
must be determined according to the intended functional application.
Keywords: N-carboxymethyl chitosan, N-substitution,
heterogeneous conditions, NaOH concentration
Abstrak
N-karboksimetil kitosan (N-CMC) merupakan salah
satu terbitan kitosan yang telah digunakan bagi menambahbaik kekurangan kitosan
dan boleh disintesis melalui pengakilan secara terus dengan kehadiran bes.
Dalam kajian ini, kesan kepekatan natrium hidroksida (NaOH) dalam keadaan
heterogen telah dikaji untuk menghasilkan N-CMC. Kepekatan natrium hidroksida
(NaOH) dibezakan daripada 1.5 M hingga 7.5 M. Kajian ini menunjukkan tapak
penggantian pada kitosan dipengaruhi oleh kepekatan NaOH. Hasil kajian
menunjukkan N-CMC telah berjaya disintesis pada kepekatan yang lebih tinggi,
6.0 M and 7.5 M dalam keadaan heterogen. Kehadiran puncak pada 1321 cm-1
dan 3.2 ppm masing-masing pada spektroskopi inframerah transformasi Fourier
(FTIR) dan resonans magnet nukleus 1H (NMR), membuktikan
penukargantian kumpulan karboksimetil berlaku pada tapak amina (NH2).
Analisis pembelauan sinar-X (XRD) menunjukkan perubahan yang tidak ketara bagi
darjah kehabluran N-CMC pada kedua-dua kepekatan NaOH. Walau bagaimanapun,
analisis termogravimetri (TGA) dan kalorimetri pengimbasan pembezaan (DSC)
menunjukkan N-CMC yang dihasilkan mempunyai sifat terma yang berbeza dimana
suhu peralihan kaca bagi 6.0 M lebih rendah berbanding 7.5 M NaOH. Oleh itu,
pemilihan kepekatan NaOH dalam penghasilan N-CMC ditentukan berdasarkan
aplikasi yang akan digunakan.
Kata kunci: N-karboksimetil kitosan,
penggantian-N, keadaan heterogen, kepekatan NaOH
References
1.
Alves, N. M. and Mano, J. F. (2008). Chitosan
derivatives obtained by chemical modifications for biomedical and environmental
applications. International Journal of Biological Macromolecules, 43(5):
401-414.
2.
Tzaneva, D., Simitchiev, A., Petkova, N., Nenov,
V., Stoyanova, A. and Denev, P. (2017). Synthesis of carboxymethyl chitosan and
its rheological behaviour in pharmaceutical and cosmetic emulsions. Journal
Applied Pharmaceutical Science, 7(10): 70-78.
3.
Madera-Santana, T. J., Herrera-Méndez, C. H. and
Rodríguez-Núñez, J. R. (2018). An overview of the chemical modifications of
chitosan and their advantages. Green Materials, 6(4): 131-142.
4.
Miranda, M. E. S., Marcolla, C., Rodrígues, C. A.,
Wilhelm, H. M., Sierakowski, M. R., Bresolin, T. M. B. and de Freitas, R. A.
(2006). Chitosan and N‐carboxymethyl chitosan: I. The role of
N‐carboxymethylation of chitosan in the thermal stability and dynamic
mechanical properties of its films. Polymer international, 55(8):
961-969.
5.
Andreica, B. I., Cheng, X. and Marin, L. (2020).
Quaternary ammonium salts of chitosan. A critical overview on the synthesis and
properties generated by quaternization. European Polymer Journal, 2020: 110016.
6.
Klinkesorn, U. (2013).
The role of chitosan in emulsion formation and stabilization. Food Reviews
International, 29(4): 371-393.
7.
An, N. T., Dong, N. T. and Le Dung, P. (2009).
Water-soluble N-carboxymethylchitosan derivatives: Preparation,
characteristics, and its application. Carbohydrate Polymers, 75(3):
489-497.
8.
Skorik, Y. A., Gomes, C. A., Vasconcelos, M. T. S.
and Yatluk, Y. G. (2003). N-(2-Carboxyethyl) chitosans: regioselective
synthesis, characterisation and protolytic equilibria. Carbohydrate
research, 338(3): 271- 276.
9.
Sahariah, P., Árnadóttir, B. and Másson, M.
(2016). Synthetic strategy for selective N-modified and O-modified PEGylated
chitosan derivatives. European Polymer Journal, 81: 53-63.
10.
Salehuddin, N. E. A., Rodzali, N. A., Ku Bulat, K.
H. and Mobarak, N. N. (2021). Site-selective carboxymethylation of chitosan
under heterogeneous conditions. Malaysian Journal of Analytical Sciences,
25(3): 376-387.
11.
Rahman, M., Hasan, M., Nitai, A. S., Nam, S.,
Karmakar, A. K., Ahsan, Shiddiky, M. J. A. and Ahmed, M. B. (2021). Recent
developments of carboxymethyl cellulose. Polymers, 13(8): 1345.
12.
Heinze, T. and Pfeiffer, K. (1999). Studies on the
synthesis and characterization of carboxymethylcellulose. Die
Angewandte Makromolekulare Chemie, 266(1): 37-45.
13.
Chen, X. G. and Park, H. J. (2003). Chemical
characteristics of O-carboxymethyl chitosan related to the preparation
conditions. Carbohydrate Polymers, 53(4): 355-359.
14.
Elomaa, M., Asplund, T., Soininen, P.,
Laatikainen, R., Peltonen, S., Hyvärinen, S. and Urtti, A. (2004).
Determination of the degree of substitution of acetylated starch by hydrolysis,
1H NMR and TGA/IR. Carbohydrate Polymers, 57(3):
261-267.
15.
Pushpamalar, V.,
Langford, S. J., Ahmad, M. and Lim, Y. Y. (2006). Optimization of reaction
conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate
Polymers 64(2): 312-318.
16.
Aggeryd, I. and Olin, Å. (1985). Determination of
the degree of substitution of sodium carboxymethylcellulose by potentiometric
titration and use of the extended henderson-hasselbalch equation and the
simplex method for the evaluation. Talanta, 32(8): 645-649.
17.
Liu, J., Zhang, X., Kennedy, J. F., Jiang, M.,
Cai, Q. and Wu, X. (2019). Chitosan induces resistance to tuber rot in stored
potato caused by Alternaria tenuissima. International
Journal of Biological Macromolecules, 140: 851-857.
18.
Mobarak, N. N., Ahmad, A., Abdullah, M. P., Ramli,
N. and Rahman, M. Y. A. (2013). Conductivity enhancement via chemical
modification of chitosan based green polymer electrolyte. Electrochimica
Acta, 92:161-167.
19.
Liang, X., Wang, H., Tian, H., Luo, H. and Chang,
J. (2008). Synthesis, structure and properties of novel quaternized
carboxymethyl chitosan with drug loading capacity. Acta Physico-Chimica Sinica, 24(2): 223-229.
20.
Doshi, B., Repo, E., Heiskanen, J. P., Sirviö, J.
A. and Sillanpää, M. (2017). Effectiveness of N, O-carboxymethyl chitosan on
destabilization of marine diesel, diesel and marine-2t oil for oil spill
treatment. Carbohydrate Polymers, 167: 326-336.
21.
Bukzem, A. L., Signini, R., Dos Santos, D. M.,
Lião, L. M. and Ascheri, D. P. R. (2016). Optimization of carboxymethyl
chitosan synthesis using response surface methodology and desirability
function. International Journal of Biological Macromolecules, 85:
615-624.
22.
Mourya, V. K., Inamdar, N. N. and Tiwari, A.
(2010). Carboxymethyl chitosan and its applications. Advanced Materials
Letters, 1 (1): 11 – 33.
23.
Jimtaisong, A. and Saewan, N. (2014). Utilization
of carboxymethyl chitosan in cosmetics. International Journal of
Cosmetic Science, 36(1): 12-21.
24.
Abreu, F. R. D. and Campana-Filho, S. P. (2005).
Preparation and characterization of carboxymethylchitosan. Polímeros, 15(2):
79-83.
25.
Hjerde, R. J. N., Vårum, K. M., Grasdalen, H.,
Tokura, S. and Smidsrød, O. (1997). Chemical composition of
O-(carboxymethyl)-chitins in relation to lysozyme degradation rates. Carbohydrate
Polymers, 34 (3):131-139.
26.
Muzzarelli, R. A., Ilari, P. and Petrarulo, M.
(1994). Solubility and structure of N-carboxymethylchitosan. International
Journal of Biological Macromolecules, 16(4): 177-180.
27.
Klinkesorn, U. (2013).
The role of chitosan in emulsion formation and stabilization. Food Reviews
International, 29(4): 371-393.
28.
Jaidee, A., Rachtanapun, P. and Luangkamin, S.
(2012). 1H-NMR analysis of degree of substitution in N,
O-carboxymethyl chitosan from various chitosan sources and types. Advanced
Materials Research, 506: 158 – 161.
29.
Zong, Z., Kimura, Y., Takahashi, M. and Yamane, H.
(2000). Characterization of chemical and solid-state structures of acylated
chitosans. Polymer, 41(3): 899-906.
30.
Bono, A., Ying, P. H., Yan, F. Y., Muei, C. L.,
Sarbatly, R. and Krishnaiah, D. (2009). Synthesis and characterization of
carboxymethyl cellulose from palm kernel cake. Advances in Natural and
Applied Sciences, 3(1): 5-12.
31.
Jiang, M., Wang, K., Kennedy, J. F., Nie, J., Yu,
Q. and Ma, G. (2010). Preparation and characterization of water-soluble
chitosan derivative by Michael addition reaction. International Journal
of Biological Macromolecules, 47(5): 696-699.
32.
Kurniasih, M., Purwati, P., Hermawan, D. and Zaki,
M. (2014). Optimum conditions for the synthesis of high solubility
carboxymethyl chitosan. Malaysian Journal of Fundamental and Applied
Sciences, 10(4): 189-194.
33.
Pang, H. T., Chen, X. G.,
Park, H. J., Cha, D. S. and Kennedy, J. F. (2007). Preparation and rheological
properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous
systems. Carbohydrate Polymers, 69(3): 419-425.
34.
Kittur, F. S., Prashanth, K. H., Sankar, K. U. and
Tharanathan, R. N. (2002). Characterization of chitin, chitosan and their
carboxymethyl derivatives by differential scanning calorimetry. Carbohydrate
polymers, 49(2): 185-193.
35.
Shinde, U., Ahmed, M. H. and Singh, K. (2013).
Development of dorzolamide loaded 6-o-carboxymethyl chitosan nanoparticles for
open angle glaucoma. Journal of Drug Delivery, 2013: 562727.
36.
Acosta-Ferreira, S., Castillo, O. S.,
Madera-Santana, J. T., Mendoza-García, D. A., Núñez-Colín, C. A.,
Grijalva-Verdugo, C., Villa-Lerma. A. G., Morales-Vargas. A. T. and Rodríguez-Núñez,
J. R. (2020). Production and physicochemical characterization of chitosan for
the harvesting of wild microalgae consortia. Biotechnology Reports, 28:
e00554.
37.
Kamari, A. and Yusoff, S. N. M. (2019). N-octyl
chitosan derivatives as amphiphilic carrier agents for herbicide
formulations. Open Chemistry, 17(1): 365-380.
38.
Kasaai, M. R., Arul, J. and Charlet, G. (2013).
Fragmentation of chitosan by acids. The Scientific World Journal,
2013: 508540.
39.
Osorio-Madrazo, A., David, L., Trombotto, S., Lucas,
J. M., Peniche-Covas, C. and Domard, A. (2010). Kinetics study of the
solid-state acid hydrolysis of chitosan: Evolution of the crystallinity and
macromolecular structure. Biomacromolecules, 11(5): 1376-1386.
40.
Franca, E. F., Lins, R.
D., Freitas, L. C. and Straatsma, T. P. (2008). Characterization of chitin and
chitosan molecular structure in aqueous solution. Journal of Chemical Theory and Computation 4(12): 2141-2149.
41.
Brza, M. A., Aziz, S. B.,
Nofal, M. M., Saeed, S. R., Al-Zangana, S., Karim, W. O., Hussen, S. A., Abdulwahid, R.T. and Kadir, M. F. Z.
(2020). Drawbacks of low lattice energy ammonium salts for ion-conducting
polymer electrolyte preparation: structural, morphological, and electrical
characteristics of CS:PEO:NH4BF4-based polymer blend
electrolytes. Polymers 12(9): 1885-1906.
42.
Katugampola, P., Winstead, C. and Adeleke, A.
(2014). Thermal stability of carboxymethyl chitosan varying the degree of
substitution. International Journal of Pharmaceutical Science Invention, 3(5):
42- 48.
43.
Samuels, R. J. (1981).
Solid state characterization of the structure of chitosan films. Journal of Polymer Science: Polymer Physics
Edition 19(7): 1081-1105.