Malaysian Journal of Analytical Sciences Vol 25 No 6 (2021): 987 - 997

 

 

 

 

CATALYTIC ACTIVITY STUDY OF SYNTHESISED POLYSTYRENE-SUPPORTED PALLADIUM(II)-HYDRAZONE (CH3) AS CATALYST IN HECK REACTION

 

(Kajian Aktiviti Pemangkinan Paladium(II)-Hidrazon (CH3) dengan Sokongan Polistirena Sebagai Pemangkin dalam Tindak Balas Heck)

 

Najwa Asilah M. Shamsuddin1, Norul Azilah Abdul Rahman1,2, Kumuthini Chandrasekaram3, Yatimah Alias3, Nur Rahimah Said1*

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

 Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia

2School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

3Centre for Ionic Liquids (UMCiL), Department of Chemistry, Faculty of Science,

University of Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author:  nurra1435@uitm.edu.my

 

 

Received: 13 September 2021; Accepted: 15 November 2021; Published:  27 December 2021

 

 

Abstract

Polystyrene as polymer support has various requirements of catalysts for different chemical reactions due to its accessibility, mechanical robustness, product selectivity, chemical inertness, and facile functionalization. This study focuses on the synthesis of polystyrene-supported palladium(II)-hydrazone complex where the hydrazone ligand with an electron donating group (-CH3) acting as the catalyst in Heck reaction. The first step began with aldehyde functionalization of chloromethylated polystyrene to form PS-CHO. This was then followed by the reaction of PS-CHO with p-toluic hydrazide to form a polystyrene-supported hydrazone ligand (PS-H(CH3)), which was then reacted with palladium(II) chloride to form polystyrene-supported palladium(II) hydrazone catalyst, PS-Pd(CH3). The successfully synthesized PS-Pd(CH3) catalyst was characterized using FTIR, PXRD, FESEM-EDX and AAS. The catalytic performance of PS-Pd(CH3) was tested using Heck reaction between 1-bromo-4-nitrobenzene and methyl acrylate. The percent conversion of reactant to product was determined using GC-FID, where the optimum conversion rate was 99.84 % with 1.0 mmol% catalyst loading, K2CO3 as base and DMA as solvent at 165 °C within a 60-minute reaction time.

 

Keywords:  Heck reaction, hydrazone ligand, polystyrene, polymer support, palladium(II)-hydrazone complex

 

Abstrak

Polistirena sebagai sokongan polimer mempunyai pelbagai kegunaan sebagai pemangkin tindak balas kimia kerana kebolehdapatan, ketahanan mekanik, daya pemilihan produk, lengai secara kimia dan pengfungsian mudah. Kajian ini memberi tumpuan kepada sintesis kompleks paladium(II)-hidrazon dengan sokongan polistirena dengan ligan hidrazon yang mengandungi kumpulan elektron penderma (-CH3) sebagai pemangkin dalam tindak balas Heck. Sintesis dimulakan dengan pengubahsuaian polistirena klorometil dengan fungsian aldehid untuk membentuk PS-CHO. Kajian dilanjutkan dengan tindak balas PS-CHO dengan p-toluik hidrazida untuk membentuk ligan hidrazon dengan sokongan polistirena (PS-H(CH3)). Kemudian, PS-H(CH3) bertindak balas dengan paladium(II) klorida untuk membentuk pemangkin hidrazon paladium(II) dengan sokongan polistirena iaitu PS-Pd(CH3). Kejayaan sintesis pemangkin disahkan dengan menggunakan FTIR, PXRD, FESEM-EDX dan AAS. Keberkesanan pemangkinan PS-Pd(CH3) diuji dalam reaksi Heck antara 1-bromo-4-nitrobenzena dan metil akrilat. Peratus penukaran bahan tindak balas kepada produk ditentukan dengan menggunakan GC-FID, dimana penukaran optimum ialah 99.84% dengan pemangkin 1.0 mmol%, K2CO3 sebagai bes dan DMA sebagai pelarut pada suhu 165 ° C dalam masa tindak balas 60 min.

 

Kata kunci:  tindak balas Heck, ligan hidrazon, polistirena, sokongan polimer, komplek paladium (II) - hidrazon

 

 

References

1.      Ali, M., Rahman, M., Sarkar, S. M. and Hamid, S. B. A. (2014). Heterogeneous metal catalysts for oxidation reactions. Journal of Nanomaterials, 1: 209.

2.      Czulak, J., Jakubiak-Marcinkowska, A. and Trochimczuk, A. (2013). Polymer catalysts imprinted with metal ions as biomimics of metalloenzymes. Advances in Materials Science and Engineering, 9: 464265.

3.      Miceli, M., Frontera, P., Macario, A. and Malara, A. (2021). Recovery/reuse of heterogeneous supported spent catalysts. Catalysts, 11(5): 591.

4.      Erkenez, T. and Tümer, M. (2019). Polymer-anchoring Schiff base ligands and their metal complexes: Investigation of their electrochemical, photoluminescence, thermal and catalytic properties. Arabian Journal of Chemistry, 12(8): 2618-2631.

5.      Itsuno, S. (2013). Polymer catalysts. Encyclopedia of Polymeric Nanomaterials, 2013: 1-9.

6.      Kann, N. (2010). Recent applications of polymer supported organometallic catalysts in organic synthesis. Molecules, 15(9): 6306-6331.

7.      Kamilah, S. C., Jusoh, S. A. and Shamsuddin, M. (2014). Synthesis and physicochemical analysis of Polystyrene-anchored Pd(II) metal complex. Scientific Research Journal, 11(2): 45-56.

8.      Kantam, M. L., Reddy, P. V., Srinivas, P. and Bhargava, S. (2011). Ligand and base-free Heck reaction with heteroaryl halides. Tetrahedron Letters, 34: 4490-4493.

9.      Said, N. R., Mustakim, M. A., Sani, N. M. and Baharin, S. N. A. (2018). Heck reaction using palladium-benzimidazole catalyst: Synthesis, characterisation and catalytic activity. IOP Conference Series: Materials Science and Engineering, 458: 12-19.

10.   Sherwood, J., Clark, J. H., Fairlamb, I. J. and Slattery, J. M. (2019). Solvent effects in palladium catalysed cross-coupling reactions. Green Chemistry, 21(9): 2164-2213.

11.   Umar, H. F. (2008). Synthesis and characterization of transition metal with hydrazoneicarbohydrazone ligand. Doctoral dissertation, Universiti Malaysia Sarawak.

12.   Gomez, I. J., Arnaiz, B., Cacioppo, M., Arcudi, F. and Prato, M. (2018). Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry, 6(35): 5540-5548.

13.   Mandewale, M. C., Patil, U. C., Shedge, S. V., Dappadwad, U. R. and Yamgar, R. S. (2017). A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni-Suef University Journal of Basic and Applied Sciences, 6(4), 354-361.

14.   Watanabe, K., Mino, T., Abe, T., Kogure, T. and Sakamoto, M. (2014). Hydrazone–palladium-catalyzed allylic arylation of cinnamyloxyphenylboronic acid pinacol esters. The Journal of Organic Chemistry, 79: 6695-6702.

15.   Aly, S. A. and Fathalla, S. K. (2020). Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities. Arabian Journal of Chemistry, 13(2): 3735-3750.

16.   Roy, S., Mondal, K. C. and Roesky, H. W. (2016). Cyclic alkyl (amino) carbene stabilized complexes with low coordinate metals of enduring nature. Accounts of Chemical Research, 49(3): 357-369.

17.   Rosar, V., Dedeic, D., Nobile, T., Fini, F., Balducci, G., Alessio, E. and Milani, B. (2016). Palladium complexes with simple iminopyridines as catalysts for polyketone synthesis. Dalton Transactions, 45(37): 14609-14619.

18.   Anitha, C., Sumathi, S., Tharmaraj, P. and Sheela, C. D. (2012). Synthesis, characterization, and biological activity of some transition metal complexes derived from novel hydrazone azo schiff base ligand. International Journal of Inorganic Chemistry, 8: 493942.

19.   Chen, Q., Lin, B. L., Fu, Y., Liu, L. and Guo, Q. X. (2005). Ligand effects on migratory insertion by the Heck reaction. Research on Chemical Intermediates, 31(9): 759-767.

20.   Xuemei, H. and Hao, Y. (2013). Fabrication of polystyrene/detonation nanographite composite microspheres with the core/shell structure via pickering emulsion polymerization. Journal of Nanomaterials, 8: 751497.

21.   Muthumari, S. and Ramesh, R. (2016). Highly efficient palladium (II) hydrazone based catalysts for the Suzuki coupling reaction in aqueous medium. RSC Advances, 6(57): 52101-52112.

22.   Jagtap, S. (2017). Heck reaction—State of the art. Catalysts, 7(9): 267.

23.   Alhazmi, H. A. (2019). FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Scientia Pharmaceutica, 87(1): 5.

24.   Ain, Q. U., Ashiq, U., Jamal, R. A. and Mahrooof-Tahir, M. (2013). Synthesis, spectroscopic and radical scavenging studies of palladium (II)-hydrazide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 115: 683-689.

25.   El-Tabl, A. S., Mohamed Abd El-Waheed, M., Wahba, M. A. and Abou El-Fadl, A. E. H. (2015). Synthesis, characterization, and anticancer activity of new metal complexes derived from 2-hydroxy-3-(hydroxyimino)-4-oxopentan-2-ylidene) benzohydrazide. Bioinorganic Chemistry and Applications, 14: 126023.

26.   Xie, J., Feng, N., Wang, R., Guo, Z., Dong, H., Cui, H. and Liu, X. (2020). A reusable biosorbent using Ca-alginate immobilized providencia vermicola for Pd (II) recovery from acidic solution. Water, Air and Soil Pollution, 231(2): 1-12.

27.   Mondal, J., Gomes, R., Modak, A. and Bhaumik, A. (2013). Pd-anchored functionalized mesoporous materials as robust and recyclable heterogeneous catalysts for a series of C=C bond forming reactions. Recyclable Catalysis, 1: 10-33.

28.   Walbrück, K., Kuellmer, F., Witzleben, S. and Guenther, K. (2019). Synthesis and characterization of PVP-stabilized palladium nanoparticles by XRD, SAXS, SP-ICP-MS, and SEM. Journal of Nanomaterials, 1: 4758108.

29.   Veisi, H., Mirshokraie, S. A. and Ahmadian, H. (2018). Synthesis of biaryls using palladium nanoparticles immobilized on metformine-functionalized polystyrene resin as a reusable and efficient nanocatalyst. International Journal of Biological Macromolecules, 108: 419-425.

30.   Pérez-Zúñiga, C., Negrete-Vergara, C., Guerchais, V., Le Bozec, H., Moya, S. A. and Aguirre, P. (2019). Hydrogenation of N-benzylideneaniline by palladium (II) catalysts with phosphorus-nitrogen ligands using formic acid as a renewable hydrogen source. Molecular Catalysis, 462: 126-131.

31.   Kamilah, S.C., Jusoh, S. A., Sukeri, M., Yusof, M., Khairul, W. M. and Shamsuddin, M. (2018). The effect of bases, catalyst loading and reaction temperature on the the effect of bases, catalyst loading and reaction temperature on the catalytic evaluation of supported palladium (II) catalyst in the Mizoroki-Heck. International Journal of Engineering and Technology, 7(3): 467-469.

32.   Riapanitra, A. (2010). Catalytic studies of low valent palladium (N)-heterocyclic carbene complexes Doctoral dissertation, University of Tasmania.

33.   Said, N. R., Adib, N. N. M., Roszaidi, R. M., Shamsuddin, N. A. M. and Badri, N. N. H. S. (2019). Catalytic activity study of synthesized palladium (ii)-hydrazone complexes in the Heck reaction: Optimization of the amount of catalyst loading and reaction time. International Conference in Organic Synthesis, 9: pp. 10.

34.   Shamsuddin, N. A. M., Badri, N. N. H. S., Rahman, N. A. A. and Said, N. R. (2021). Examining the effect of base, solvent and temperature in Heck reaction with the presence of palladium (II)-hydrazone complexes. AIP Conference Proceedings, 2332: pp. 1.

35.   Yaşar, S., Özcan, E. Ö., Gürbüz, N., Çetinkaya, B. and Özdemir, İ. (2010). Palladium-catalyzed Heck coupling reaction of aryl bromides in aqueous media using tetrahydropyrimidinium salts as carbene ligands. Molecules, 15(2): 649-659.