Malaysian
Journal of Analytical Sciences Vol 25 No 6
(2021): 987 - 997
CATALYTIC
ACTIVITY STUDY OF SYNTHESISED POLYSTYRENE-SUPPORTED PALLADIUM(II)-HYDRAZONE (CH3)
AS CATALYST IN HECK REACTION
(Kajian Aktiviti Pemangkinan Paladium(II)-Hidrazon (CH3)
dengan Sokongan Polistirena Sebagai Pemangkin dalam Tindak Balas Heck)
Najwa Asilah M. Shamsuddin1, Norul Azilah Abdul
Rahman1,2, Kumuthini Chandrasekaram3, Yatimah Alias3, Nur Rahimah Said1*
1School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti Teknologi MARA, Cawangan Negeri
Sembilan, Kampus Kuala Pilah, 72000 Kuala Pilah, Negeri Sembilan, Malaysia
2School of Chemistry and Environment,
Faculty of Applied Sciences,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Centre for Ionic Liquids (UMCiL),
Department of Chemistry, Faculty of Science,
University
of Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author: nurra1435@uitm.edu.my
Received: 13 September 2021;
Accepted: 15 November 2021; Published: 27
December 2021
Abstract
Polystyrene as polymer support has various
requirements of catalysts for different chemical reactions due to its
accessibility, mechanical robustness, product selectivity, chemical inertness,
and facile functionalization. This study focuses on the synthesis of
polystyrene-supported palladium(II)-hydrazone complex where the hydrazone
ligand with an electron donating group (-CH3) acting as the catalyst
in Heck reaction. The first step began with aldehyde functionalization of
chloromethylated polystyrene to form PS-CHO. This was then followed by the
reaction of PS-CHO with p-toluic hydrazide to form a polystyrene-supported
hydrazone ligand (PS-H(CH3)), which was then reacted with
palladium(II) chloride to form polystyrene-supported palladium(II) hydrazone
catalyst, PS-Pd(CH3). The successfully synthesized PS-Pd(CH3)
catalyst was characterized using FTIR, PXRD, FESEM-EDX and AAS. The catalytic
performance of PS-Pd(CH3) was tested using Heck reaction between 1-bromo-4-nitrobenzene
and methyl acrylate. The percent conversion of reactant to product was
determined using GC-FID, where the optimum conversion rate was 99.84 % with 1.0
mmol% catalyst loading, K2CO3 as base and DMA as solvent
at 165 °C within a 60-minute reaction time.
Keywords: Heck
reaction, hydrazone ligand, polystyrene, polymer support,
palladium(II)-hydrazone complex
Abstrak
Polistirena
sebagai sokongan polimer mempunyai pelbagai kegunaan sebagai pemangkin tindak
balas kimia kerana kebolehdapatan, ketahanan mekanik, daya pemilihan produk,
lengai secara kimia dan pengfungsian mudah. Kajian ini memberi tumpuan kepada
sintesis kompleks paladium(II)-hidrazon dengan sokongan polistirena dengan
ligan hidrazon yang mengandungi kumpulan elektron penderma (-CH3)
sebagai pemangkin dalam tindak balas Heck. Sintesis dimulakan dengan
pengubahsuaian polistirena klorometil dengan fungsian aldehid untuk membentuk
PS-CHO. Kajian dilanjutkan dengan tindak balas PS-CHO dengan p-toluik hidrazida
untuk membentuk ligan hidrazon dengan sokongan polistirena (PS-H(CH3)).
Kemudian, PS-H(CH3) bertindak balas dengan paladium(II) klorida
untuk membentuk pemangkin hidrazon paladium(II) dengan sokongan polistirena
iaitu PS-Pd(CH3). Kejayaan sintesis pemangkin disahkan dengan
menggunakan FTIR, PXRD, FESEM-EDX dan AAS. Keberkesanan pemangkinan PS-Pd(CH3)
diuji dalam reaksi Heck antara 1-bromo-4-nitrobenzena dan metil akrilat.
Peratus penukaran bahan tindak balas kepada produk ditentukan dengan
menggunakan GC-FID, dimana penukaran optimum ialah 99.84% dengan pemangkin 1.0
mmol%, K2CO3 sebagai bes dan DMA sebagai pelarut pada
suhu 165 ° C dalam masa tindak balas 60 min.
Kata kunci: tindak
balas Heck, ligan hidrazon, polistirena, sokongan polimer, komplek paladium
(II) - hidrazon
References
1.
Ali, M.,
Rahman, M., Sarkar, S. M. and Hamid, S. B. A. (2014). Heterogeneous metal
catalysts for oxidation reactions. Journal
of Nanomaterials, 1: 209.
2.
Czulak,
J., Jakubiak-Marcinkowska, A. and Trochimczuk, A. (2013). Polymer catalysts
imprinted with metal ions as biomimics of metalloenzymes. Advances in Materials Science and Engineering, 9: 464265.
3.
Miceli,
M., Frontera, P., Macario, A. and Malara, A. (2021). Recovery/reuse of
heterogeneous supported spent catalysts. Catalysts,
11(5): 591.
4.
Erkenez,
T. and Tümer, M. (2019). Polymer-anchoring Schiff base ligands and their metal
complexes: Investigation of their electrochemical, photoluminescence, thermal
and catalytic properties. Arabian Journal
of Chemistry, 12(8): 2618-2631.
5.
Itsuno,
S. (2013). Polymer catalysts. Encyclopedia
of Polymeric Nanomaterials, 2013: 1-9.
6.
Kann, N.
(2010). Recent applications of polymer supported organometallic catalysts in
organic synthesis. Molecules, 15(9):
6306-6331.
7.
Kamilah,
S. C., Jusoh, S. A. and Shamsuddin, M. (2014). Synthesis and physicochemical
analysis of Polystyrene-anchored Pd(II) metal complex. Scientific Research Journal, 11(2): 45-56.
8.
Kantam,
M. L., Reddy, P. V., Srinivas, P. and Bhargava, S. (2011). Ligand and base-free
Heck reaction with heteroaryl halides. Tetrahedron
Letters, 34: 4490-4493.
9.
Said, N.
R., Mustakim, M. A., Sani, N. M. and Baharin, S. N. A. (2018). Heck reaction
using palladium-benzimidazole catalyst: Synthesis, characterisation and
catalytic activity. IOP Conference
Series: Materials Science and Engineering, 458: 12-19.
10.
Sherwood,
J., Clark, J. H., Fairlamb, I. J. and Slattery, J. M. (2019). Solvent effects
in palladium catalysed cross-coupling reactions. Green Chemistry, 21(9): 2164-2213.
11.
Umar, H.
F. (2008). Synthesis and characterization of transition metal with
hydrazoneicarbohydrazone ligand. Doctoral dissertation, Universiti Malaysia
Sarawak.
12.
Gomez,
I. J., Arnaiz, B., Cacioppo, M., Arcudi, F. and Prato, M. (2018).
Nitrogen-doped carbon nanodots for bioimaging and delivery of paclitaxel. Journal of Materials Chemistry, 6(35):
5540-5548.
13.
Mandewale,
M. C., Patil, U. C., Shedge, S. V., Dappadwad, U. R. and Yamgar, R. S. (2017).
A review on quinoline hydrazone derivatives as a new class of potent
antitubercular and anticancer agents. Beni-Suef
University Journal of Basic and Applied Sciences, 6(4), 354-361.
14.
Watanabe,
K., Mino, T., Abe, T., Kogure, T. and Sakamoto, M. (2014).
Hydrazonepalladium-catalyzed allylic arylation of cinnamyloxyphenylboronic
acid pinacol esters. The Journal of
Organic Chemistry, 79: 6695-6702.
15.
Aly, S.
A. and Fathalla, S. K. (2020). Preparation, characterization of some transition
metal complexes of hydrazone derivatives and their antibacterial and
antioxidant activities. Arabian Journal
of Chemistry, 13(2): 3735-3750.
16.
Roy, S.,
Mondal, K. C. and Roesky, H. W. (2016). Cyclic alkyl (amino) carbene stabilized
complexes with low coordinate metals of enduring nature. Accounts of Chemical Research, 49(3): 357-369.
17.
Rosar,
V., Dedeic, D., Nobile, T., Fini, F., Balducci, G., Alessio, E. and Milani, B.
(2016). Palladium complexes with simple iminopyridines as catalysts for
polyketone synthesis. Dalton Transactions,
45(37): 14609-14619.
18.
Anitha,
C., Sumathi, S., Tharmaraj, P. and Sheela, C. D. (2012). Synthesis,
characterization, and biological activity of some transition metal complexes
derived from novel hydrazone azo schiff base ligand. International Journal of Inorganic Chemistry, 8: 493942.
19.
Chen,
Q., Lin, B. L., Fu, Y., Liu, L. and Guo, Q. X. (2005). Ligand effects on
migratory insertion by the Heck reaction. Research
on Chemical Intermediates, 31(9): 759-767.
20.
Xuemei,
H. and Hao, Y. (2013). Fabrication of polystyrene/detonation nanographite
composite microspheres with the core/shell structure via pickering emulsion
polymerization. Journal of Nanomaterials,
8: 751497.
21.
Muthumari,
S. and Ramesh, R. (2016). Highly efficient palladium (II) hydrazone based
catalysts for the Suzuki coupling reaction in aqueous medium. RSC Advances, 6(57): 52101-52112.
22.
Jagtap,
S. (2017). Heck reactionState of the art. Catalysts,
7(9): 267.
23.
Alhazmi,
H. A. (2019). FT-IR spectroscopy for the identification of binding sites and
measurements of the binding interactions of important metal ions with bovine
serum albumin. Scientia Pharmaceutica,
87(1): 5.
24.
Ain, Q.
U., Ashiq, U., Jamal, R. A. and Mahrooof-Tahir, M. (2013). Synthesis,
spectroscopic and radical scavenging studies of palladium (II)-hydrazide
complexes. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 115: 683-689.
25.
El-Tabl,
A. S., Mohamed Abd El-Waheed, M., Wahba, M. A. and Abou El-Fadl, A. E. H.
(2015). Synthesis, characterization, and anticancer activity of new metal
complexes derived from 2-hydroxy-3-(hydroxyimino)-4-oxopentan-2-ylidene)
benzohydrazide. Bioinorganic Chemistry
and Applications, 14: 126023.
26.
Xie, J.,
Feng, N., Wang, R., Guo, Z., Dong, H., Cui, H. and Liu, X. (2020). A reusable
biosorbent using Ca-alginate immobilized providencia vermicola for Pd (II)
recovery from acidic solution. Water, Air
and Soil Pollution, 231(2): 1-12.
27.
Mondal,
J., Gomes, R., Modak, A. and Bhaumik, A. (2013). Pd-anchored functionalized
mesoporous materials as robust and recyclable heterogeneous catalysts for a
series of C=C bond forming reactions. Recyclable
Catalysis, 1: 10-33.
28.
Walbrück,
K., Kuellmer, F., Witzleben, S. and Guenther, K. (2019). Synthesis and
characterization of PVP-stabilized palladium nanoparticles by XRD, SAXS,
SP-ICP-MS, and SEM. Journal of
Nanomaterials, 1: 4758108.
29.
Veisi,
H., Mirshokraie, S. A. and Ahmadian, H. (2018). Synthesis of biaryls using
palladium nanoparticles immobilized on metformine-functionalized polystyrene
resin as a reusable and efficient nanocatalyst. International Journal of Biological Macromolecules, 108: 419-425.
30.
Pérez-Zúñiga,
C., Negrete-Vergara, C., Guerchais, V., Le Bozec, H., Moya, S. A. and Aguirre,
P. (2019). Hydrogenation of N-benzylideneaniline by palladium (II) catalysts
with phosphorus-nitrogen ligands using formic acid as a renewable hydrogen
source. Molecular Catalysis, 462:
126-131.
31.
Kamilah,
S.C., Jusoh, S. A., Sukeri, M., Yusof, M., Khairul, W. M. and Shamsuddin, M.
(2018). The effect of bases, catalyst loading and reaction temperature on the
the effect of bases, catalyst loading and reaction temperature on the catalytic
evaluation of supported palladium (II) catalyst in the Mizoroki-Heck. International Journal of Engineering and
Technology, 7(3): 467-469.
32.
Riapanitra,
A. (2010). Catalytic studies of low valent palladium (N)-heterocyclic carbene
complexes Doctoral dissertation, University of Tasmania.
33.
Said, N.
R., Adib, N. N. M., Roszaidi, R. M., Shamsuddin, N. A. M. and Badri, N. N. H.
S. (2019). Catalytic activity study of synthesized palladium (ii)-hydrazone
complexes in the Heck reaction: Optimization of the amount of catalyst loading
and reaction time. International
Conference in Organic Synthesis, 9: pp. 10.
34.
Shamsuddin,
N. A. M., Badri, N. N. H. S., Rahman, N. A. A. and Said, N. R. (2021).
Examining the effect of base, solvent and temperature in Heck reaction with the
presence of palladium (II)-hydrazone complexes. AIP Conference Proceedings, 2332: pp. 1.
35.
Yaşar,
S., Özcan, E. Ö., Gürbüz, N., Çetinkaya, B. and Özdemir, İ. (2010).
Palladium-catalyzed Heck coupling reaction of aryl bromides in aqueous media
using tetrahydropyrimidinium salts as carbene ligands. Molecules, 15(2): 649-659.