Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 728 - 739

 

 

 

 

EXTRACTION SOLVENTS IN MICROALGAL LIPID EXTRACTION FOR BIOFUEL PRODUCTION: A REVIEW

 

(Pelarut Pengekstrakan dalam Pengekstrakan Lipid Mikroalgal untuk Penghasilan Bahan Api Bio: Satu Tinjauan)

 

Tan Yeong Hwang1*, Chai Mee Kin1, Wong Ling Shing2

 

1College of Engineering,

University Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia

2Faculty of Health and Life Science, INTI International University,

Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

*Corresponding author:  yeonghwang_113@hotmail.com

 

 

Received: 28 July 2021; Accepted: 22 September 2021; Published:  25 October 2021

 

 

Abstract

Oleaginous microalgae biomass has gained noteworthy attention as feedstock for biofuel production due to its fast growth rate and capability of growing in non-arable land with high lipid content. Among biofuels, biodiesel has been a prevailing area of interest to many researchers. Prior to transformation of microalgae lipid into biodiesel, a lipid extraction step needs to be performed to disrupt the microalgal cell walls in order to extract the lipid. Hence, selecting an appropriate extraction solvent is of the utmost importance to ensure the efficient extraction of desired lipid content which can then be transformed into high quality biodiesel.  Conventional organic solvents such as chloroform, dichloromethane and methanol are usually used in lipid extraction due to its high extraction efficiency. However, toxicity and environmental issues related to these solvents are of major concerns. Hence, many recent studies have focused on the use of green solvents such as bio-based solvents, supercritical carbon dioxide and ionic liquids. This review discusses the use of conventional organic solvents and green solvents in microalgae lipid extraction. Advantages and shortcomings of these solvents are also discussed. In addition, the future perspective for extraction solvents used in lipid extraction is also discussed.

 

Keywords:  extraction solvent, microalgae lipid extraction, green solvent, biofuel

 

Abstrak

Biojisim mikroalga berminyak dinilai sebagai bahan mentah yang terkenal untuk penghasilan bahan api bio kerana kadar pertumbuhannya yang cepat dan keupayaan bertumbuh di dalam tanah yang tidak sesuai untuk pertanian dengan kandungan lipid yang tinggi. Antara bahan api bio, biodiesel telah menarik minat ramai penyelidik. Sebelum transformasi mikroalgae ke dalam biodiesel, langkah pengekstrakan lipid perlu dilakukan untuk melemahkan dinding sel mikroalga untuk mengekstrak lipid. Oleh itu, memilih pelarut pengekstrakan yang sesuai adalah sangat penting untuk pengekstrakan kandungan lipid yang dikehendaki yang boleh diubah menjadi biodiesel berkualiti tinggi. Pelarut organik konvensional seperti kloroform, diklorometana dan metanol biasanya digunakan dalam pengekstrakan lipid kerana kecekapan pengekstrakan yang tinggi. Namum, ketoksikan dan isu-isu alam sekitar pelarut-pelarut ini adalah kebimbangan utama. Oleh itu, banyak kajian baru-baru ini telah memberi tumpuan kepada penggunaan pelarut hijau seperti pelarut berasaskan bio, karbon dioksida superkritikal dan cecair ionik. Tinjauan ini membincangkan pelarut organik konvensional dan pelarut hijau yang digunakan dalam pengekstrakan lipid microalga. Kelebihan dan kelemahan pelarut-pelarut tersebut juga dibincangkan. Di samping itu, perspektif masa depan untuk pelarut-pelarut pengekstrakan yang digunakan dalam pengekstrakan lipid juga dibincangkan.

 

Kata kunci:  pelarut pengekstrakan, pengekstrakan lipid mikroalga, pelarut hijau, bahan api bio

 

References

1.      Javed, F., Aslam, M, Rashid, N., Shamair, Z., Khan, A. L., Yasin, M., Fazal, T., Hafeez, A., Rehman, F., Rehman, M. S. U., Khan, Z., Iqbal, J. and Bazmi, A. A. (2019). Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel, 255: 115826.

2.      Catone, C. M., Ripa, M., Geremia, E. and Ulgiati, S. (2021). Bio-products from algae-based biorefinery on wastewater: A review. Journal of Environmental Management, 293:112792.

3.        Sun, S., Zhao, W., Mao, X., Li, Y., Wu, T. and Chen, C. (2018). High-value biomass from microalgae production platforms: Strategies and progress based on carbon metabolism and energy conversion. Biotechnology for Biofuels, 11: 1-23.

4.      Lin, T. S. and Wu, J. Y. (2015). Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Bioresource Technology, 184: 100-107.

5.      Calixto C.  D., Santana, J. K. S., Lira, E. B., Sassi, P. G. B., Rosenhaim, R., Sassi C. F. C, Conceição, M. M. and Sassi, R. (2016). Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresource Technology, 221: 438-446.

6.      Ridley, C. J. A., Parkera, B. M., Norman, L., Schlarb-Ridley, B., Dennis, R., Jamieson, A. E., Clark, D., Skill, S. C., Smith, A. G. and Davey, M. P. (2018). Growth of microalgae using nitrate-rich brine wash from the water industry Algal Research, 33: 91-98.

7.      Nagarajan, D., Kusmayadi, A., Yen, H. W., Di Dong, C., Lee, D. J. and Chang, J. S. (2019). Current advances in biological swine wastewater treatment using microalgae-based processes. Bioresource Technology, 289: 121718.

8.      Balasubramanian, R. K., Doan, T. T. Y and Obbard, J. P. (2013). Factors affecting cellular lipid extraction from marine microalgae. Chemical Engineering Journal, 215–216: 929-936.

9.      Kuan, D., Du, W., Dai, L., Ma, G. and Liu, D. (2016). Effect of solvent on the extraction of microalgae lipid for biodiesel production. Chemical Research in Chinese Universities 32: 625-629.

10.   Pohndorf, R. S., Camara, Á. S., Larrosa, A. P. Q., Pinheiro, C. P., Strieder, M. M. and Pinto, L. A. A. (2016). Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods. Biomass and Bioenergy, 93: 25-32.

11.   Shin, H.Y., Shim, S. H., Ryu, Y. J. Yang, J. H., Lim, S .M. and Lee, C. G. (2018). Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnology and Bioprocess Engineering, 23: 16-22.

12.   Vieira, B. B., Soares, J., Amorim, M. L., Bittencourt, P. V. Q., Superbi, R. C., Oliveira, E. B., Coimbra, J. S. R. and Martins, M. A. (2021).  Optimized extraction of neutral carbohydrates, crude lipids and photosynthetic pigments from the wet biomass of the microalga Scenedesmus obliquus BR003. Separation and Purification Technolog,y 269:118711.

13.   Silitonga, A. S. Masjuki, H. H., Ong, H. C., Mahlia, T. M. I and Kusumo, F. (2017). Optimization of extraction of lipid from Isochrysis galbana microalgae species for biodiesel synthesis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39: 1167-1175.

14.   Escorsim, A. M., Rocha, G., Vargas, J. V. C., Mariano, A. B., Ramos, L. P., Corazza, M. L. and Cordeiro, C. S.  (2018) Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass and Bioenergy, 108: 470-478.

15.   Singh, R., Kumar, A. and Sharma, Y. C. (2020). Evaluation of various lipid extraction techniques for microalgae and their effect on biochemical components. Waste and Biomass Valorization, 11: 2603-2612.

16.   Bernaerts, T. M. M., Verstreken, H., Dejonghe, C., Gheysen, L., Foubert, I., Grauwet, T. and Loey, A. M. V. (2019). Cell disruption of Nannochloropsis sp. improves in vitro bioaccessibility of carotenoids and ω3-LC-PUFA. Journal of Functional Foods, 65: 103770.

17.     González-González, L. M., Astals, S., Pratt, S., Jensen, P. D. and Schenk, P. M. (2019). Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production. Bioresource Technology Reports, 7: 100214.

18.     Yao, L., Gerde, J. S., Lee, S., Wang, T. and Harrata, K. A. (2015). Microalgae lipid characterization. Journal of Agricultural and Food Chemistry, 63(6): 1773-1783.

19.     Penga, Z., Feng, L., Wang, X. and Miao, X. (2019). Adaptation of Synechococcus sp. PCC 7942 to phosphate starvation by glycolipid accumulation and membrane lipid remodeling. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864: 158522.

20.     Cooney, M., Young, G. and Nagle, N. (2009). Extraction of bio-oils from microalgae. Separation & Purification Reviews, 38: 291-325

21.     Ramluckan, K., Moodley, K. G. and Bux, F. (2014). An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the Soxhlet extraction method. Fuel, 114: 103-108.

22.     Anthony, R and Stuart, B. 2015. Solvent extraction and characterization of neutral lipids in Oocystis sp. Frontiers in Energy Research, 3: 1-5.

23.     Byreddy, A. R., Gupta, A., Barrow, C. J. and Puri, M. (2015). Comparison of cell disruption methods for improving lipid extraction from Thraustochytrid strains. Marine Drugs, 13: 5111-5127.

24.     Supaporn, P. and Yeom, H. S. (2016). Optimization of a two-step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification. Biotechnology and Bioprocess Engineering, 21: 551-560.

25.   Xia, A., Sun, C. Fu, Q., Liao, Q., Huang, Y., Zhu, X. and Li. Q. (2020). Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance. Energy, 212: 118581.

26.   Escorsim, A. M., Rocha, G., Vargas, J. V. C., Mariano, A. B., Ramosa, L. P., Corazzac, M. L. and Cordeiro, C. S. (2018). Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass and Bioenergy, 108: 470-478.

27.   Dvoretsky, D., Dvoretsky, S. Temnov, M., Akulinin, E. and Peshkova, E. (2016). Enhanced lipid extraction from microalgae chlorella vulgaris biomass: Experiments, modelling, optimization. Chemical Engineering Transactions, 49: 175-180.

28.   Ryckebosch, E, Bruneel, C., Termote-Verhalle, R., Muylaert, K. and Foubert, I. (2014). Influence of extraction solvent system on extractability of lipid components from different microalgae species. Algal Research, 3: 46-43.

29.   Mahmood, W. M. A. W, Theodoropoulos, C. and Gonzalez-Miquel, M. (2017). Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chemistry, 19: 5723-5733.

30.   Hidalgo, P., Ciudad, G. and Navia, R. (2016). Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresource Technology, 201: 360-364.

31.   Moradi-kheibari, N., Ahmadzadeh, H. and Hosseini, M. (2017). Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems Engineering, 40: 1363-1373.

32.   Ramola, B., Kumar, V., Nanda, M., Mishra, Y., Tyagi, T., Gupta, G. and Sharma, N. (2019). Evaluation, comparison of different solvent extraction, cell disruption methods and hydrothermal liquefaction of Oedogonium macroalgae for biofuel production. Biotechnology Reports, 22: e00340.

33.   Tang, Y., Zhang, Y., Rosenberg, J. N., Sharif, N., Betenbaugh, M. J. and Wang, F. (2016). Efficient lipid extraction and quantification of fatty acids from algal biomass using accelerated solvent extraction (ASE). RSC Advances, 6: 29127-29134.

34.   Ansari, F. A., Gupta, S. K., Shriwastav, A., Guldhe, A., Rawat, I. and Bux, F. (2017). Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass. Environmental Science and Pollution Research, 24: 15299-15307.

35.   Shin, H. Y, Shim, S. H., Ryu, Y. J., Yang, J. H., Lim, S. M. and Lee, C. G. (2018). Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnology and Bioprocess Engineering, 23: 16-22.

36.   Kapoore, R. V., Butler, T. O., Pandhal, J. and Vaidyanathan, S. (2018). Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology, 7: 18.

37.   Khoo, K. S. Chew, K. W., Yew, G. Y., Leong, W. H., Chai, Y. H., Show, P. L. and Chen, W. H. (2020). Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 304: 122996.

38.   Schuur, S., Brouwer, T., Smink, D. and Sprakel, L. M. J. (2019). Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 18: 57-65.

39.   Jesus, S. S., Ferreira, G. F., Fregolente, L. V. and Filho, R. M. (2018). Laboratory extraction of microalgal lipids using sugarcane bagasse derived green solvents. Algal Research, 292: 292-300.

40.   Tanzi, C. D., Vian, M. A., Ginies, C., Elmaataoui, M. and Chemat, F. (2012). Terpenes as green solvents for extraction of oil from microalgae. Molecules, 17: 8196-8205.

41.   Mahmood, W. M. A. W, Theodoropoulos, C. and Gonzalez-Miquel, M. (2017). Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chemistry, 19: 5723-5733.

42.   Yoo, C. G., Pu, Y. and Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Current Opinion in Green and Sustainable Chemistry, 5: 5-11.

43.   Pan, J., Muppaneni, T., Sun, Y., Reddy, H. K., Fu, J., Lu, X. and Deng, S. (2016). Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel, 178: 49-55.

44.   Valerie C. A. and Rehmann, O. R. (2016). Ionic liquids for the fractionation of microalgae biomass. Current Opinion in Green and Sustainable Chemistry, 2: 22-27.

45.   Shankara, M., Chhotaray, P. K., Agrawal, A., Gardasd, R. L., Tamilarasan, K. and Rajesh, M. (2017). Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Research, 25: 228-236.

46.   Wahidin, S., Idris, A., Yusof, N. M., Kamis, N. H. H. and Shaleh, S. R. M. (2018). Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Conversion and Management, 171: 1397–1404.

47.   Jordana, A. and Gathergood, N. (2015). Biodegradation of ionic liquids – a critical review. Chemical Society Reviews, 44: 8200-8237.

48.   Sydow, M., Owsianiak, M., Framski, G., Woźniak-Karczewska, G., Piotrowska-Cyplik, A., Ławniczak, Ł., Szulc, A., Zgoła-Grześkowiaka, A., Heipiepere, H. J. and Chrzanowski, Ł. (2018). Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation. Ecotoxicology and Environmental Safety, 147: 157-164.

49.   Biczak, R., Pawłowska, B., Telesiński, A. and Kapuśniak, J. (2017). Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish. Environmental Science and Pollution Research, 24: 18444-18457.

50.   Chen, C. and Mu, T. C. (2021). Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chemical Engineering, 2: 174-186.

51.   Chen. J., Wang, Q., Liu, M. and Zhang, L. (2017). The effect of deep eutectic solvent on the pharmacokinetics of salvianolic acid B in rats and its acute toxicity test. Journal of Chromatography B, 1063: 60-66.

52.   Pan, Y., Alam, A., Wang, Z. Huang, D., Hu, K., Chen, H. and Yuan, Z. (2017). One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresource Technology, 238: 157-163.

53.   Tommasi, E., Cravotto, G., Galletti, P., Grillo, G., Mazzotti, M., Sacchetti, G., Samorì, C., Tabasso, S., Tacchini, M. and Tagliavini, E. (2017). Enhanced and selective lipid extraction from microalgae P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pre-treatment. ACS Sustainable Chemistry and Engineering, 5: 8316-8322.

54.   Lu, W., Alam, M. A., Pan, Y., Wu, J., Wang, Z. and Yuan, Z. (2016). A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresource Technology, 218: 123-128.

55.   Cai, C., Chen, X., Li, D. and Tan, Z. (2021). Three-phase partitioning based on CO2-responsive deep eutectic solvents for the green and sustainable extraction of lipid from Nannochloropsis sp. Separation and Purification Technology, 279: 119685.

56.   Obluchinskaya, E. D., Pozharitskaya, O. N., Zakharova, L.V., Daurtseva, A.V., Flisyuk, E.V. and Shikov, A.N. (2021). Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules, 26: 4198.

57.   Torregrosa-Crespo, J., Marset, X., Guillen, G., Ramón, D. J. and Martínez-Espinosa, R. M. (2020). New guidelines for testing ‘‘Deep eutectic solvents” toxicity and their effects on the environment and living beings. Science of the Total Environment, 704: 135382.

58.   Hayyan, M., Hashim, M. A., Al-Saadi, M. A., Hayyan, A., AlNashefc, I. M. and Mirghani, M. E. S. (2013). Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere, 93: 455-459.

59.   Du, Y., Schuur, B., and Brilman, D. W. F. (2017). Maximizing lipid yield in Neochloris oleoabundans algae extraction by stressing and using multiple extraction stages with n-ethylbutylamine as switchable solvent. Industrial & Engineering Chemistry Research, 56: 8073-8080.

60.     Du, Y., Schuur, B., Kersten, S. R. A. and Brilman, D. W. F. (2015). Opportunities for switchable solvents for lipid extraction from wet algal biomass: An energy evaluation. Algal Research, 11: 271-283.

61.     Bazel, Y., Rečlo, M. and Chubirka, Y. (2020). Switchable hydrophilicity solvents in analytical chemistry. Five years of achievements. Microchemical Journal, 157: 105115.

62.     Motlagh, S. R., Harun, R., 1, Biak, D. R. A. and Hussain, S. A. (2020). Microwave assisted extraction of lipid from Nannochloropsis gaditana microalgae using [EMIM]Cl. IOP Conf. Series: Materials Science and Engineering, 778: 012164.

63.     Poliakoff, M. and Licence, P. (2007). Green chemistry. Nature, 450: 810–812.

64.     Mustapha, S. I. and Isa, Y. M. (2020). Utilization of quaternary solvent mixtures for extraction of lipids from Scenedesmus obliquus microalgae. Chemical Engineering, 7: 1788877.

65.     Molino, A., Mehariya, S., Sanzo, G. D., Larocca, V., Martino, M., Leone, G. P., Marino, T., Simeone Chianese, S., Roberto Balducchi, R. and Musmarr, D. (2020). Recent developments in supercritical fluid extraction of bioactive compounds from microalgae: Role of key parameters, technological achievements and challenges. Journal of CO2 Utilization, 36: 196-209.

66.     Malekghasemi, S., Kariminia, H. R., Plechkova, N, K. and Ward, V. C. A. (2021). Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass and Bioenergy, 150: 106126.

67.     Orr, V. C. A., Plechkova, N. V., Seddon, K. R. and Rehmann, L. (2016). Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustainable Chemistry and Engineering, 4: 591-600.

68.   Jun Cheng, Guo, H., Qiu, Y., Zhang, Z., Mao, Y., Qian, L., Yang, W. and Park, J. Y. (2020). Switchable solvent N, N, N′,N′-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. Bioresource Technology, 312: 123607.