Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 728 - 739
EXTRACTION
SOLVENTS IN MICROALGAL LIPID EXTRACTION FOR BIOFUEL PRODUCTION: A REVIEW
(Pelarut
Pengekstrakan dalam Pengekstrakan Lipid Mikroalgal untuk Penghasilan Bahan
Api Bio: Satu Tinjauan)
Tan Yeong Hwang1*, Chai Mee Kin1,
Wong Ling Shing2
1College of Engineering,
University
Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia
2Faculty of Health and
Life Science, INTI International University,
Persiaran
Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
*Corresponding
author: yeonghwang_113@hotmail.com
Received: 28 July 2021; Accepted: 22 September 2021;
Published: 25 October 2021
Abstract
Oleaginous
microalgae biomass has gained noteworthy attention as feedstock for biofuel
production due to its fast growth rate and capability of growing in non-arable
land with high lipid content. Among biofuels, biodiesel has been a prevailing
area of interest to many researchers. Prior to transformation of microalgae
lipid into biodiesel, a lipid extraction step needs to be performed to disrupt
the microalgal cell walls in order to extract the lipid. Hence, selecting an
appropriate extraction solvent is of the utmost importance to ensure the
efficient extraction of desired lipid content which can then be transformed
into high quality biodiesel.
Conventional organic solvents such as chloroform, dichloromethane and
methanol are usually used in lipid extraction due to its high extraction
efficiency. However, toxicity and environmental issues related to these
solvents are of major concerns. Hence, many recent studies have focused on the use
of green solvents such as bio-based solvents, supercritical carbon dioxide and
ionic liquids. This review discusses the use of conventional organic solvents
and green solvents in microalgae lipid extraction. Advantages and shortcomings
of these solvents are also discussed. In addition, the future perspective for
extraction solvents used in lipid extraction is also discussed.
Keywords: extraction
solvent, microalgae lipid extraction, green solvent, biofuel
Abstrak
Biojisim mikroalga berminyak
dinilai sebagai bahan mentah yang terkenal untuk penghasilan bahan api bio
kerana kadar pertumbuhannya yang cepat dan keupayaan bertumbuh di dalam tanah
yang tidak sesuai untuk pertanian dengan kandungan lipid yang tinggi. Antara
bahan api bio, biodiesel telah menarik minat ramai penyelidik. Sebelum
transformasi mikroalgae ke dalam biodiesel, langkah pengekstrakan lipid perlu
dilakukan untuk melemahkan dinding sel mikroalga untuk mengekstrak lipid. Oleh
itu, memilih pelarut pengekstrakan yang sesuai adalah sangat penting untuk
pengekstrakan kandungan lipid yang dikehendaki yang boleh diubah menjadi
biodiesel berkualiti tinggi. Pelarut organik konvensional seperti kloroform,
diklorometana dan metanol biasanya digunakan dalam pengekstrakan lipid kerana
kecekapan pengekstrakan yang tinggi. Namum, ketoksikan dan isu-isu alam sekitar
pelarut-pelarut ini adalah kebimbangan utama. Oleh itu, banyak kajian baru-baru
ini telah memberi tumpuan kepada penggunaan pelarut hijau seperti pelarut
berasaskan bio, karbon dioksida superkritikal dan cecair ionik. Tinjauan ini
membincangkan pelarut organik konvensional dan pelarut hijau yang digunakan
dalam pengekstrakan lipid microalga. Kelebihan dan kelemahan pelarut-pelarut
tersebut juga dibincangkan. Di samping itu, perspektif masa depan untuk
pelarut-pelarut pengekstrakan yang digunakan dalam pengekstrakan lipid juga
dibincangkan.
Kata kunci: pelarut pengekstrakan, pengekstrakan
lipid mikroalga, pelarut hijau, bahan api bio
References
1.
Javed, F., Aslam, M, Rashid, N., Shamair,
Z., Khan, A. L., Yasin, M., Fazal, T., Hafeez, A., Rehman, F., Rehman, M. S.
U., Khan, Z., Iqbal, J. and Bazmi, A. A. (2019). Microalgae-based biofuels,
resource recovery and wastewater treatment: A pathway towards sustainable
biorefinery. Fuel, 255: 115826.
2.
Catone, C. M., Ripa, M.,
Geremia, E. and Ulgiati, S. (2021). Bio-products from algae-based biorefinery
on wastewater: A review. Journal of Environmental Management,
293:112792.
3.
Sun, S., Zhao, W., Mao,
X., Li, Y., Wu, T. and Chen, C. (2018). High-value biomass from microalgae
production platforms: Strategies and progress based on carbon metabolism and
energy conversion. Biotechnology for Biofuels, 11: 1-23.
4.
Lin, T. S. and Wu, J. Y.
(2015). Effect of carbon sources on growth and lipid accumulation of newly
isolated microalgae cultured under mixotrophic condition. Bioresource
Technology, 184: 100-107.
5.
Calixto C. D., Santana, J. K. S., Lira, E. B., Sassi, P.
G. B., Rosenhaim, R., Sassi C. F. C, Conceição, M. M. and Sassi, R. (2016).
Biochemical compositions and fatty acid profiles in four species of microalgae
cultivated on household sewage and agro-industrial residues. Bioresource
Technology, 221: 438-446.
6.
Ridley, C. J. A., Parkera,
B. M., Norman, L., Schlarb-Ridley, B., Dennis, R., Jamieson, A. E., Clark, D.,
Skill, S. C., Smith, A. G. and Davey, M. P. (2018). Growth of microalgae
using nitrate-rich brine wash from the water industry Algal Research, 33:
91-98.
7.
Nagarajan, D.,
Kusmayadi, A., Yen, H. W., Di Dong, C., Lee, D. J. and Chang, J. S. (2019).
Current advances in biological swine wastewater treatment using
microalgae-based processes. Bioresource Technology, 289: 121718.
8.
Balasubramanian, R. K.,
Doan, T. T. Y and Obbard, J. P. (2013). Factors affecting cellular lipid
extraction from marine microalgae. Chemical Engineering Journal, 215–216:
929-936.
9.
Kuan, D., Du, W., Dai,
L., Ma, G. and Liu, D. (2016). Effect of solvent on the extraction of
microalgae lipid for biodiesel production. Chemical Research in Chinese
Universities 32: 625-629.
10.
Pohndorf, R. S., Camara,
Á. S., Larrosa, A. P. Q., Pinheiro, C. P., Strieder, M. M. and Pinto, L. A. A.
(2016). Production of lipids from microalgae Spirulina sp.: Influence of
drying, cell disruption and extraction methods. Biomass and Bioenergy,
93: 25-32.
11.
Shin, H.Y., Shim, S. H.,
Ryu, Y. J. Yang, J. H., Lim, S .M. and Lee, C. G. (2018). Lipid extraction from
Tetraselmis sp. microalgae for biodiesel production using hexane-based
solvent mixtures. Biotechnology and Bioprocess Engineering, 23: 16-22.
12.
Vieira, B. B., Soares,
J., Amorim, M. L., Bittencourt, P. V. Q., Superbi, R. C., Oliveira, E. B.,
Coimbra, J. S. R. and Martins, M. A. (2021).
Optimized extraction of neutral carbohydrates, crude lipids and
photosynthetic pigments from the wet biomass of the microalga Scenedesmus
obliquus BR003. Separation and Purification Technolog,y 269:118711.
13.
Silitonga, A. S.
Masjuki, H. H., Ong, H. C., Mahlia, T. M. I and Kusumo, F. (2017). Optimization
of extraction of lipid from Isochrysis galbana microalgae species for
biodiesel synthesis. Energy Sources, Part A:
Recovery, Utilization and Environmental Effects, 39: 1167-1175.
14.
Escorsim, A. M., Rocha,
G., Vargas, J. V. C., Mariano, A. B., Ramos, L. P., Corazza, M. L. and
Cordeiro, C. S. (2018) Extraction of Acutodesmus
obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass
and Bioenergy, 108: 470-478.
15.
Singh, R., Kumar, A. and
Sharma, Y. C. (2020). Evaluation of various lipid extraction techniques for
microalgae and their effect on biochemical components. Waste and Biomass
Valorization, 11: 2603-2612.
16.
Bernaerts, T. M. M.,
Verstreken, H., Dejonghe, C., Gheysen, L., Foubert, I., Grauwet, T. and Loey,
A. M. V. (2019). Cell disruption of Nannochloropsis sp. improves in
vitro bioaccessibility of carotenoids and ω3-LC-PUFA. Journal of
Functional Foods, 65: 103770.
17.
González-González, L.
M., Astals, S., Pratt, S., Jensen, P. D. and Schenk, P. M. (2019). Impact of
osmotic shock pre-treatment on microalgae lipid extraction and subsequent
methane production. Bioresource Technology Reports, 7: 100214.
18.
Yao, L., Gerde, J. S., Lee, S., Wang, T.
and Harrata, K. A. (2015). Microalgae lipid characterization. Journal of
Agricultural and Food Chemistry, 63(6): 1773-1783.
19.
Penga, Z., Feng, L., Wang, X. and Miao,
X. (2019). Adaptation of Synechococcus sp. PCC 7942 to phosphate
starvation by glycolipid accumulation and membrane lipid remodeling. Biochimica
et Biophysica Acta - Molecular and Cell Biology of Lipids, 1864: 158522.
20.
Cooney, M., Young, G. and Nagle, N.
(2009). Extraction of bio-oils from microalgae. Separation &
Purification Reviews, 38: 291-325
21.
Ramluckan, K., Moodley, K. G. and Bux, F.
(2014). An evaluation of the efficacy of using selected solvents for the
extraction of lipids from algal biomass by the Soxhlet extraction method. Fuel,
114: 103-108.
22.
Anthony, R and Stuart, B. 2015. Solvent
extraction and characterization of neutral lipids in Oocystis sp. Frontiers
in Energy Research, 3: 1-5.
23.
Byreddy, A. R., Gupta, A., Barrow, C. J.
and Puri, M. (2015). Comparison of cell disruption methods for improving lipid
extraction from Thraustochytrid strains. Marine Drugs, 13:
5111-5127.
24.
Supaporn, P. and Yeom, H. S. (2016).
Optimization of a two-step biodiesel production process comprised of lipid
extraction from blended sewage sludge and subsequent lipid transesterification.
Biotechnology and Bioprocess Engineering, 21: 551-560.
25.
Xia, A., Sun, C. Fu, Q., Liao, Q., Huang,
Y., Zhu, X. and Li. Q. (2020). Biofuel production from wet microalgae biomass:
Comparison of physicochemical properties and extraction performance. Energy,
212: 118581.
26.
Escorsim, A. M., Rocha, G., Vargas, J. V.
C., Mariano, A. B., Ramosa, L. P., Corazzac, M. L. and Cordeiro, C. S. (2018).
Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and
hexane as solvent. Biomass and Bioenergy, 108: 470-478.
27.
Dvoretsky, D., Dvoretsky, S. Temnov, M.,
Akulinin, E. and Peshkova, E. (2016). Enhanced lipid extraction from microalgae
chlorella vulgaris biomass: Experiments, modelling, optimization. Chemical
Engineering Transactions, 49: 175-180.
28.
Ryckebosch, E, Bruneel, C.,
Termote-Verhalle, R., Muylaert, K. and Foubert, I. (2014). Influence of
extraction solvent system on extractability of lipid components from different
microalgae species. Algal Research, 3: 46-43.
29.
Mahmood, W. M. A. W, Theodoropoulos, C.
and Gonzalez-Miquel, M. (2017). Enhanced microalgal lipid extraction using
bio-based solvents for sustainable biofuel production. Green Chemistry,
19: 5723-5733.
30.
Hidalgo, P., Ciudad, G. and Navia, R.
(2016). Evaluation of different solvent mixtures in esterifiable lipids
extraction from microalgae Botryococcus braunii for biodiesel
production. Bioresource Technology, 201: 360-364.
31.
Moradi-kheibari, N., Ahmadzadeh, H. and
Hosseini, M. (2017). Use of solvent mixtures for total lipid extraction of Chlorella
vulgaris and gas chromatography FAME analysis. Bioprocess and Biosystems
Engineering, 40: 1363-1373.
32.
Ramola, B., Kumar, V., Nanda, M., Mishra,
Y., Tyagi, T., Gupta, G. and Sharma, N. (2019). Evaluation, comparison of
different solvent extraction, cell disruption methods and hydrothermal
liquefaction of Oedogonium macroalgae for biofuel production. Biotechnology
Reports, 22: e00340.
33.
Tang, Y., Zhang, Y., Rosenberg, J. N.,
Sharif, N., Betenbaugh, M. J. and Wang, F. (2016). Efficient lipid extraction
and quantification of fatty acids from algal biomass using accelerated solvent
extraction (ASE). RSC Advances, 6: 29127-29134.
34.
Ansari, F. A., Gupta, S. K., Shriwastav,
A., Guldhe, A., Rawat, I. and Bux, F. (2017). Evaluation of various solvent
systems for lipid extraction from wet microalgal biomass and its effects on primary
metabolites of lipid-extracted biomass. Environmental Science and Pollution
Research, 24: 15299-15307.
35.
Shin, H. Y, Shim, S. H., Ryu, Y. J.,
Yang, J. H., Lim, S. M. and Lee, C. G. (2018). Lipid extraction from Tetraselmis
sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnology
and Bioprocess Engineering, 23: 16-22.
36.
Kapoore, R. V., Butler, T. O., Pandhal,
J. and Vaidyanathan, S. (2018). Microwave-assisted extraction for microalgae:
from biofuels to biorefinery. Biology, 7: 18.
37.
Khoo, K. S. Chew, K. W., Yew, G. Y.,
Leong, W. H., Chai, Y. H., Show, P. L. and Chen, W. H. (2020). Recent advances
in downstream processing of microalgae lipid recovery for biofuel production. Bioresource
Technology, 304: 122996.
38.
Schuur, S., Brouwer, T., Smink, D. and
Sprakel, L. M. J. (2019). Green solvents for sustainable separation processes. Current
Opinion in Green and Sustainable Chemistry, 18: 57-65.
39.
Jesus, S. S., Ferreira, G. F.,
Fregolente, L. V. and Filho, R. M. (2018). Laboratory extraction of microalgal
lipids using sugarcane bagasse derived green solvents. Algal Research,
292: 292-300.
40.
Tanzi, C. D., Vian, M. A., Ginies, C.,
Elmaataoui, M. and Chemat, F. (2012). Terpenes as green solvents for extraction
of oil from microalgae. Molecules, 17: 8196-8205.
41.
Mahmood, W. M. A. W, Theodoropoulos, C.
and Gonzalez-Miquel, M. (2017). Enhanced microalgal lipid extraction using
bio-based solvents for sustainable biofuel production. Green Chemistry,
19: 5723-5733.
42.
Yoo, C. G., Pu, Y. and Ragauskas, A. J.
(2017). Ionic liquids: Promising green solvents for lignocellulosic biomass
utilization. Current Opinion in Green and Sustainable Chemistry, 5:
5-11.
43.
Pan, J., Muppaneni, T., Sun, Y., Reddy,
H. K., Fu, J., Lu, X. and Deng, S. (2016). Microwave-assisted extraction of
lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel,
178: 49-55.
44.
Valerie C. A. and Rehmann, O. R. (2016).
Ionic liquids for the fractionation of microalgae biomass. Current Opinion
in Green and Sustainable Chemistry, 2: 22-27.
45.
Shankara, M., Chhotaray, P. K., Agrawal,
A., Gardasd, R. L., Tamilarasan, K. and Rajesh, M. (2017). Protic ionic
liquid-assisted cell disruption and lipid extraction from fresh water Chlorella
and Chlorococcum microalgae. Algal Research, 25: 228-236.
46.
Wahidin, S., Idris, A., Yusof, N. M.,
Kamis, N. H. H. and Shaleh, S. R. M. (2018). Optimization of the ionic
liquid-microwave assisted one-step biodiesel production process from wet
microalgal biomass. Energy Conversion and Management, 171: 1397–1404.
47.
Jordana, A. and Gathergood, N. (2015).
Biodegradation of ionic liquids – a critical review. Chemical Society
Reviews, 44: 8200-8237.
48.
Sydow, M., Owsianiak, M., Framski, G.,
Woźniak-Karczewska, G., Piotrowska-Cyplik, A., Ławniczak, Ł.,
Szulc, A., Zgoła-Grześkowiaka, A., Heipiepere, H. J. and Chrzanowski,
Ł. (2018). Biodiversity of soil bacteria exposed to sub-lethal
concentrations of phosphonium-based ionic liquids: Effects of toxicity and
biodegradation. Ecotoxicology and Environmental Safety, 147: 157-164.
49.
Biczak, R., Pawłowska, B.,
Telesiński, A. and Kapuśniak, J. (2017). Role of cation structure in
the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in
spring barley and common radish. Environmental Science and Pollution
Research, 24: 18444-18457.
50.
Chen, C. and Mu, T. C. (2021). Revisiting
greenness of ionic liquids and deep eutectic solvents. Green Chemical
Engineering, 2: 174-186.
51.
Chen. J., Wang, Q., Liu, M. and Zhang, L.
(2017). The effect of deep eutectic solvent on the pharmacokinetics of
salvianolic acid B in rats and its acute toxicity test. Journal of
Chromatography B, 1063: 60-66.
52.
Pan, Y., Alam, A., Wang, Z. Huang, D.,
Hu, K., Chen, H. and Yuan, Z. (2017). One-step production of biodiesel from wet
and unbroken microalgae biomass using deep eutectic solvent. Bioresource
Technology, 238: 157-163.
53.
Tommasi, E., Cravotto, G., Galletti, P.,
Grillo, G., Mazzotti, M., Sacchetti, G., Samorì, C., Tabasso, S., Tacchini, M.
and Tagliavini, E. (2017). Enhanced and selective lipid extraction from
microalgae P. tricornutum by dimethyl carbonate and supercritical CO2
using deep eutectic solvents and microwaves as pre-treatment. ACS
Sustainable Chemistry and Engineering, 5: 8316-8322.
54.
Lu, W., Alam, M. A., Pan, Y., Wu, J.,
Wang, Z. and Yuan, Z. (2016). A new approach of microalgal biomass pretreatment
using deep eutectic solvents for enhanced lipid recovery for biodiesel
production. Bioresource Technology, 218: 123-128.
55.
Cai, C., Chen, X., Li, D. and Tan, Z.
(2021). Three-phase partitioning based on CO2-responsive deep
eutectic solvents for the green and sustainable extraction of lipid from Nannochloropsis
sp. Separation and Purification Technology, 279: 119685.
56.
Obluchinskaya, E. D., Pozharitskaya, O.
N., Zakharova, L.V., Daurtseva, A.V., Flisyuk, E.V. and Shikov, A.N. (2021).
Efficacy of natural deep eutectic solvents for extraction of hydrophilic and
lipophilic compounds from Fucus vesiculosus. Molecules, 26: 4198.
57.
Torregrosa-Crespo, J., Marset, X.,
Guillen, G., Ramón, D. J. and Martínez-Espinosa, R. M. (2020). New guidelines
for testing ‘‘Deep eutectic solvents” toxicity and their effects on the
environment and living beings. Science of the Total Environment, 704: 135382.
58.
Hayyan, M., Hashim, M. A., Al-Saadi, M.
A., Hayyan, A., AlNashefc, I. M. and Mirghani, M. E. S. (2013). Assessment of
cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere,
93: 455-459.
59.
Du, Y., Schuur, B., and Brilman, D. W. F.
(2017). Maximizing lipid yield in Neochloris oleoabundans algae
extraction by stressing and using multiple extraction stages with
n-ethylbutylamine as switchable solvent. Industrial & Engineering
Chemistry Research, 56: 8073-8080.
60.
Du, Y., Schuur, B., Kersten, S. R. A. and
Brilman, D. W. F. (2015). Opportunities for switchable solvents for lipid
extraction from wet algal biomass: An energy evaluation. Algal Research,
11: 271-283.
61.
Bazel, Y., Rečlo, M. and Chubirka,
Y. (2020). Switchable hydrophilicity solvents in analytical chemistry. Five
years of achievements. Microchemical Journal, 157: 105115.
62.
Motlagh, S. R., Harun, R., 1, Biak, D. R.
A. and Hussain, S. A. (2020). Microwave assisted extraction of lipid from Nannochloropsis
gaditana microalgae using [EMIM]Cl. IOP Conf. Series: Materials Science
and Engineering, 778: 012164.
63.
Poliakoff, M. and Licence, P. (2007).
Green chemistry. Nature, 450: 810–812.
64.
Mustapha, S. I. and Isa, Y. M. (2020).
Utilization of quaternary solvent mixtures for extraction of lipids from
Scenedesmus obliquus microalgae. Chemical Engineering, 7: 1788877.
65.
Molino, A., Mehariya, S., Sanzo, G. D.,
Larocca, V., Martino, M., Leone, G. P., Marino, T., Simeone Chianese, S.,
Roberto Balducchi, R. and Musmarr, D. (2020). Recent developments in
supercritical fluid extraction of bioactive compounds from microalgae: Role of
key parameters, technological achievements and challenges. Journal of CO2
Utilization, 36: 196-209.
66.
Malekghasemi, S., Kariminia, H. R.,
Plechkova, N, K. and Ward, V. C. A. (2021). Direct transesterification of wet
microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass
and Bioenergy, 150: 106126.
67.
Orr, V. C. A., Plechkova, N. V., Seddon,
K. R. and Rehmann, L. (2016). Disruption and wet extraction of the microalgae Chlorella
vulgaris using room-temperature ionic liquids. ACS Sustainable Chemistry
and Engineering, 4: 591-600.
68.
Jun Cheng, Guo,
H., Qiu, Y., Zhang, Z., Mao, Y., Qian, L., Yang, W. and Park, J. Y. (2020).
Switchable solvent N, N, N′,N′-tetraethyl-1, 3-propanediamine was
dissociated into cationic surfactant to promote cell disruption and lipid
extraction from wet microalgae for biodiesel production. Bioresource
Technology, 312: 123607.