Malaysian
Journal of Analytical Sciences Vol 25 No 5
(2021): 716 - 727
EFFECT
OF PLANT ORGANS OF Ficus deltoidea IN THE SYNTHESIS OF SILVER
NANOPARTICLES
(Kesan Organ Tumbuhan Ficus
deltoidea dalam Mensintesis Nanopartikel Perak)
Shahrulnizahana Mohammad Din1,2, Nik Ahmad Nizam Nik Malek1,3*,
Mustaffa Shamsuddin4, Juan Matmin4
1Department of Biosciences,
Faculty of Science,
Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia
2Department of Chemistry
Malaysia,
Johore Branch, Jalan Abdul
Samad, 80100 Johor Bahru, Johor, Malaysia
3Centre for Sustainable
Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial
Research (ISI-SIR)
4Department of Chemistry,
Faculty of Science
Universiti Teknologi Malaysia,
81310 UTM Johor Bahru, Johor, Malaysia
*Corresponding author:
niknizam@utm.my
Received: 8 September 2021 ;
Accepted: 26 September 2021 ; Published:
25 October 2021
Abstract
The effect of different plant organ extracts
(leaf, stem, fig and root) of Ficus deltoidea var.
kunstleri (King) Corner (Mas
Cotek) in the synthesis of silver nanoparticles (AgNP) was studied. The plant
analysis using liquid chromatography-mass spectrometry (LCMS) yielded more than
100 phytochemical compounds in each organ, of which around 50 % belong to the
phenolics, flavonoids and polyphenols compounds. The biomarker compounds
(vitexin and isovitexin) were only found in the leaf, and Total Phenolic Content
(TPC), as well as Total Flavonoid Content (TFC) were observed to be the highest
in fig compared to other organs. The localized surface plasmon resonance (LSPR)
of the biosynthesised AgNP using all organs was found at 409 to 428 nm. The
capping and stabilization of AgNP by phytochemical compounds were verified by
Fourier transform infrared (FTIR) spectroscopy as the vibration and stretching
of -NH, -CH3, -CH2, -CH, C=O and -OH functional groups
were found. There was a high abundance of phytochemical compounds in each
organ: gallic acid, kaempferol-3-(6''-caffeoylglucoside),
quercetin-3-O-rhamnoside and kaempferol 3-(3'',4''-diacetylrhamnoside) in leaf,
stem, fig and root, respectively. These compounds belong to the phenolics,
flavonoids and polyphenols groups responsible for reducing Ag+ to Ag0
(AgNP). The results indicated that the fig which contained the highest TPC and
TFC formed the highest LSPR peak for the formation of AgNP. The most important
finding was the ability of each plant organ of F. deltoidea in the AgNP
biosynthesis.
Keywords: plant organs, Ficus deltoidea,
biosynthesis, nanoparticles
Abstrak
Kesan ekstrak organ tumbuhan yang berbeza (daun, batang, ara
dan akar) dari pokok Ficus deltoidea var. kunstleri (King) Corner
(Mas Cotek) dalam mensintesis nanopartikel perak (AgNP) dianalisis dalam kajian
ini. Analisis pokok menggunakan spektometri jisim kromatografi cecair (LC-MS)
menemui lebih dari 100 sebatian fitokimia di setiap organ, di mana sekitar 50%
tergolong dalam sebatian fenolik, flavonoid dan polifenol. Sebatian penanda bio
(vitexin dan isovitexin) hanya terdapat pada daun, dan kandungan jumlah fenolik
(TPC) serta kandungan jumlah flavonoid (TFC) diperhatikan pada bahagian ara
adalah tertinggi berbanding organ lain. Resonans plasmon permukaan setempat
(LSPR) bagi AgNP biosintesis menggunakan semua organ didapati dalam lingkungan
409 hingga 428 nm. Pembatasan dan penstabilan AgNP oleh sebatian fitokimia
disahkan oleh spektroskopi inframerah transformasi Fourier (FTIR) sebagai
getaran dan perenggangan kumpulan berfungsi -NH, -CH3,
-CH2, -CH, C=O dan -OH di kesan. Terdapat sebilangan besar bahan
fitokimia di setiap organ iaitu galik asid,
kaempferol-3-(6"-kafeglukosida), quersetin-3-O-ramnosida dan kaempferol
3-(3",4"-diasetilramnosida) di bahagian daun, batang, ara dan akar masing-masing. Sebatian ini tergolong dalam
kumpulan fenolik, flavonoid dan polifenol yang bertanggungjawab untuk penurunan
Ag+ ke Ag0 (AgNP). Hasil kajian menunjukkan bahagian ara
yang mengandungi TPC dan TFC tertinggi membentuk puncak LSPR tertinggi untuk
pembetukan AgNP. Penemuan yang paling penting adalah kemampuan setiap organ
pokok F. deltoidea dalam biosintesis AgNP.
Kata
kunci: organ
tumbuhan, Ficus deltoidea, biosintesis, partikel-nano
References
1. Muhamad I. I,
Hassan N. D, Mamat S. N. H., Nawi N. M., Rashid W. A. and Tan N. A. (2017).
Extraction technologies and solvents of phytocompounds from plant materials:
Physicochemical characterization and identification of ingredients and
bioactive compounds from plant extract using various instrumentations. Ingredients
Extraction by Physico-Chemical Methods in Food, pp. 523-560.
2.
Deepak K., Shirsat R. and Kawale M.
(2016). An overview of major classes of phytochemicals: Their types and role in
disease prevention. Hislopia Journal, 9: 1-11.
3.
Ou B., Huang D., Hampsch-Woodill M.,
Flanagan J. A. and Deemer E. K. (2002). Analysis of antioxidant activities of
common vegetables employing oxygen radical absorbance capacity (ORAC) and
ferric reducing antioxidant power (FRAP) assays: A comparative study. Journal
of Agricultural and Food Chemistry, 50 (11): 3122-3128.
4.
Rao B. N. (2003). Bioactive phytochemicals
in Indian foods and their potential in health promotion and disease prevention.
Asia Pacific Journal of Clinical Nutrition, 112(1): 9-22.
5.
Lavola A., Salonen A., Virjamo V. and
Julkunen-Tiitto R. (2017). Phytochemical
Variation in the plant-part specific phenols of wild crowberry (Empetrum
hermaphroditum Hagerup) populations. Phytochemistry Letter, 21: 11-20.
6.
Alim A., Ghazali W. A. S. W., Ali N. A. M.
and Ponnuraj K. T. (2017). Phytochemical properties and traditional uses of
selected medicinal plants in Malaysia: A review. Journal of Biomedical
Science, 2(2): 4–25.
7.
Huang Y., Xiao D., Burton-freeman B. M.
and Edirisinghe I. (2016). Chemical
changes of bioactive phytochemicals during thermal processing, pp. 1-9.
8.
Goswami M., Baruah D. and Das A. M.
(2018). Green synthesis of silver nanoparticles supported on cellulose and their
catalytic application in the scavenging of organic dyes. New Journal of
Chemistry, 42(13): 10868–10878.
9.
Altemimi A., Lakhssassi N., Baharlouei A.,
Watson D. G. and Lightfoot D. A. (2017).
Phytochemicals: Extraction, isolation, and identification of bioactive
compounds from plant extracts. Plants, 6 (4): 1-23.
10.
Afzan A., Kasim N., Hadiani N., Norfaizura
I., Abdul A., Ali M. and Mat N. (2019). Differentiation of Ficus deltoidea
varieties and chemical marker determination by UHPLC-TOFMS metabolomics for establishing
quality control criteria of this popular Malaysian medicinal herb. Metabolomics,
15(3): 1–11.
11.
Nasma A., Aishath N., Azilah A., and
Sulaiman A. Z. (2018). Optimization of vitexin and isovitexin compounds
extracted from dried mas cotek leaves using one-factor-at-a-time (OFAT)
approach in aqueous extraction. International Food Research Journal, 25(6):
2560-2571.
12.
Bunawan H., Amin N. M., Bunawan S. N.,
Baharum S. N. and Noor N. M. (2014). Ficus deltoidea Jack: A review on
its phytochemical and pharmacological importance. Evidence-Based
Complementary and Alternative Medicine, 2014: 1-8.
13.
Singhal A., Singhal N., Bhattacharya A.
and Gupta A. (2017). Synthesis of silver
nanoparticles (AgNPs) using Ficus retusa leaf extract for potential
application as antibacterial and dye decolourising agents. Inorganic and Nano-Metal
Chemistry, 47(11): 1520-1529.
14.
He Y., Wei F., Ma Z., Zhang, H., Yang Q.,
Yao B. and Zhang Q. (2017). Green synthesis of silver nanoparticles using seed
extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and
antibacterial activities. RSC Advances, 7 (63): 39842-39851.
15.
Labeeuw L., Martone P. T., Boucher,
Y. and Case R. J. (2015). Ancient origin of the biosynthesis of
lignin precursors. Biology Direct, 10 (23): 1–21.
16.
Mierziak J., Kostyn K., and Kulma A. (2014). Flavonoids as important molecules of
plant interactions with the environment. Molecules, 19 (10): 16240-16265.
17.
Abdullah F. I. and Chua L. S. (2017). Prediction of
c-glycosylated apigenin (Vitexin) biosynthesis in Ficus deltoidea based on
plant proteins identified by LC-MS/MS. Frontiers in Biology, 12(6):
448-458.
18.
He M., Min J. W., Kong W. L., He X. H., Li
J. X. and Peng B. W. (2016). A review on the pharmacological effects of Vitexin
and Isovitexin. Fitoterapia, 115:74–85.
19.
Asmat-Campos D., Abreu A. C., Romero-Cano
M. S., Urquiaga-Zavaleta J., Contreras-Cáceres R., Delfín-Narciso D.,
Juárez-Cortijo L., Nazario-Naveda R., Rengifo-Penadillos R. and Fernández
I. (2020). Unraveling the active biomolecules responsible for the sustainable
synthesis of nanoscale silver particles through nuclear magnetic resonance metabolomics.
ACS Sustainable Chemistry & Engineering, 8(48): 17816-17827.
20.
Kamtekar S., Keer V. and Patil V. (2014).
Estimation of phenolic content, flavonoid content, antioxidant and alpha
amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied
Pharmaceutical Science, 4 (9): 1–65.
21.
Arifin R. N. A. R. and Jumal J.
(2021). Antioxidant activity of Averrhoa bilimbi Linn. leaves
extract using two different types of solvents. Malaysian Journal of Science,
Health & Technology, 7: 76–82.
22.
Perera B. R. and Kandiah M. (2018). Microwave assisted one-pot green
synthesis of silver nanoparticles using leaf extracts from Vigna unguiculate:
evaluation of antioxidant and antimicrobial activities. International
Journal of Interdisciplinary and Multidisciplinary Studies,
5(2): 62-78.
23.
Karalija E., Muratović E., Tarkowski
P., and Zeljković S. Ć. (2017). Variation in phenolic composition of Knautia
arvensis in correlation with geographic area and plant organ. Natural Product
Communications, 12(4): 545-548.
24.
Kalia A., Manchanda P., Bhardwaj S. and
Singh G. (2020). Biosynthesized silver nanoparticles from aqueous extracts of
sweet lime fruit and callus tissues possess variable antioxidant and
antimicrobial potentials. Inorganic and Nano-Metal Chemistry,
50(11): 1053-1062.
25.
Ovais M., Khalil A., Islam N., Ahmad I.,
Ayaz M., Saravanan M., Shinwari Z. and Mukherjee S. (2018). Role of plant phytochemicals and
microbial enzymes in biosynthesis of metallic nanoparticles. Applied
Microbiology and Biotechnology, 102(16): 6799–6814.
26.
Borhamdin S., Shamsuddin M. and Alizadeh
A. (2016). Biostabilised icosahedral gold nanoparticles: synthesis, cyclic
voltammetric studies and catalytic activity towards 4-nitrophenol reduction. Journal
of Experimental Nanoscience, 11(7): 518-530.