Malaysian Journal of Analytical Sciences Vol 25 No 5 (2021): 716 - 727

 

 

 

 

EFFECT OF PLANT ORGANS OF Ficus deltoidea IN THE SYNTHESIS OF SILVER NANOPARTICLES

 

(Kesan Organ Tumbuhan Ficus deltoidea dalam Mensintesis Nanopartikel Perak)

 

Shahrulnizahana Mohammad Din1,2, Nik Ahmad Nizam Nik Malek1,3*, Mustaffa Shamsuddin4, Juan Matmin4

 

1Department of Biosciences, Faculty of Science,

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2Department of Chemistry Malaysia,

Johore Branch, Jalan Abdul Samad, 80100 Johor Bahru, Johor, Malaysia

3Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR)

4Department of Chemistry, Faculty of Science

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author:  niknizam@utm.my

 

 

Received: 8 September 2021 ; Accepted: 26 September 2021 ; Published:  25 October 2021

 

 

Abstract

The effect of different plant organ extracts (leaf, stem, fig and root) of Ficus deltoidea var. kunstleri (King) Corner (Mas Cotek) in the synthesis of silver nanoparticles (AgNP) was studied. The plant analysis using liquid chromatography-mass spectrometry (LCMS) yielded more than 100 phytochemical compounds in each organ, of which around 50 % belong to the phenolics, flavonoids and polyphenols compounds. The biomarker compounds (vitexin and isovitexin) were only found in the leaf, and Total Phenolic Content (TPC), as well as Total Flavonoid Content (TFC) were observed to be the highest in fig compared to other organs. The localized surface plasmon resonance (LSPR) of the biosynthesised AgNP using all organs was found at 409 to 428 nm. The capping and stabilization of AgNP by phytochemical compounds were verified by Fourier transform infrared (FTIR) spectroscopy as the vibration and stretching of -NH, -CH3, -CH2, -CH, C=O and -OH functional groups were found. There was a high abundance of phytochemical compounds in each organ: gallic acid, kaempferol-3-(6''-caffeoylglucoside), quercetin-3-O-rhamnoside and kaempferol 3-(3'',4''-diacetylrhamnoside) in leaf, stem, fig and root, respectively. These compounds belong to the phenolics, flavonoids and polyphenols groups responsible for reducing Ag+ to Ag0 (AgNP). The results indicated that the fig which contained the highest TPC and TFC formed the highest LSPR peak for the formation of AgNP. The most important finding was the ability of each plant organ of F. deltoidea in the AgNP biosynthesis.

 

Keywords:  plant organs, Ficus deltoidea, biosynthesis, nanoparticles

 

Abstrak

Kesan ekstrak organ tumbuhan yang berbeza (daun, batang, ara dan akar) dari pokok Ficus deltoidea var. kunstleri (King) Corner (Mas Cotek) dalam mensintesis nanopartikel perak (AgNP) dianalisis dalam kajian ini. Analisis pokok menggunakan spektometri jisim kromatografi cecair (LC-MS) menemui lebih dari 100 sebatian fitokimia di setiap organ, di mana sekitar 50% tergolong dalam sebatian fenolik, flavonoid dan polifenol. Sebatian penanda bio (vitexin dan isovitexin) hanya terdapat pada daun, dan kandungan jumlah fenolik (TPC) serta kandungan jumlah flavonoid (TFC) diperhatikan pada bahagian ara adalah tertinggi berbanding organ lain. Resonans plasmon permukaan setempat (LSPR) bagi AgNP biosintesis menggunakan semua organ didapati dalam lingkungan 409 hingga 428 nm. Pembatasan dan penstabilan AgNP oleh sebatian fitokimia disahkan oleh spektroskopi inframerah transformasi Fourier (FTIR) sebagai getaran dan perenggangan kumpulan berfungsi -NH, -CH3, -CH2, -CH, C=O dan -OH di kesan. Terdapat sebilangan besar bahan fitokimia di setiap organ iaitu galik asid, kaempferol-3-(6"-kafeglukosida), quersetin-3-O-ramnosida dan kaempferol 3-(3",4"-diasetilramnosida) di bahagian daun, batang, ara dan akar masing-masing. Sebatian ini tergolong dalam kumpulan fenolik, flavonoid dan polifenol yang bertanggungjawab untuk penurunan Ag+ ke Ag0 (AgNP). Hasil kajian menunjukkan bahagian ara yang mengandungi TPC dan TFC tertinggi membentuk puncak LSPR tertinggi untuk pembetukan AgNP. Penemuan yang paling penting adalah kemampuan setiap organ pokok F. deltoidea dalam biosintesis AgNP.

 

Kata kunci:  organ tumbuhan, Ficus deltoidea, biosintesis, partikel-nano

 

References

1.      Muhamad I. I, Hassan N. D, Mamat S. N. H., Nawi N. M., Rashid W. A. and Tan N. A. (2017). Extraction technologies and solvents of phytocompounds from plant materials: Physicochemical characterization and identification of ingredients and bioactive compounds from plant extract using various instrumentations. Ingredients Extraction by Physico-Chemical Methods in Food, pp. 523-560.

2.      Deepak K., Shirsat R. and Kawale M. (2016). An overview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia Journal, 9: 1-11.

3.      Ou B., Huang D., Hampsch-Woodill M., Flanagan J. A. and Deemer E. K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. Journal of Agricultural and Food Chemistry, 50 (11): 3122-3128.

4.      Rao B. N. (2003). Bioactive phytochemicals in Indian foods and their potential in health promotion and disease prevention. Asia Pacific Journal of Clinical Nutrition, 112(1): 9-22.

5.      Lavola A., Salonen A., Virjamo V. and Julkunen-Tiitto R.  (2017). Phytochemical Variation in the plant-part specific phenols of wild crowberry (Empetrum hermaphroditum Hagerup) populations. Phytochemistry Letter, 21: 11-20.

6.      Alim A., Ghazali W. A. S. W., Ali N. A. M. and Ponnuraj K. T. (2017). Phytochemical properties and traditional uses of selected medicinal plants in Malaysia: A review. Journal of Biomedical Science, 2(2): 4–25.

7.      Huang Y., Xiao D., Burton-freeman B. M. and Edirisinghe I.  (2016). Chemical changes of bioactive phytochemicals during thermal processing, pp. 1-9.

8.      Goswami M., Baruah D. and Das A. M. (2018). Green synthesis of silver nanoparticles supported on cellulose and their catalytic application in the scavenging of organic dyes. New Journal of Chemistry, 42(13): 10868–10878.

9.      Altemimi A., Lakhssassi N., Baharlouei A., Watson D. G. and Lightfoot D. A.  (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6 (4): 1-23.

10.   Afzan A., Kasim N., Hadiani N., Norfaizura I., Abdul A., Ali M. and Mat N. (2019). Differentiation of Ficus deltoidea varieties and chemical marker determination by UHPLC-TOFMS metabolomics for establishing quality control criteria of this popular Malaysian medicinal herb. Metabolomics, 15(3):  1–11.

11.   Nasma A., Aishath N., Azilah A., and Sulaiman A. Z. (2018). Optimization of vitexin and isovitexin compounds extracted from dried mas cotek leaves using one-factor-at-a-time (OFAT) approach in aqueous extraction. International Food Research Journal, 25(6): 2560-2571.

12.   Bunawan H., Amin N. M., Bunawan S. N., Baharum S. N. and Noor N. M. (2014). Ficus deltoidea Jack: A review on its phytochemical and pharmacological importance. Evidence-Based Complementary and Alternative Medicine, 2014: 1-8.

13.   Singhal A., Singhal N., Bhattacharya A. and Gupta A.  (2017). Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extract for potential application as antibacterial and dye decolourising agents. Inorganic and Nano-Metal Chemistry, 47(11): 1520-1529.

14.   He Y., Wei F., Ma Z., Zhang, H., Yang Q., Yao B. and Zhang Q. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Advances, 7 (63): 39842-39851.

15.   Labeeuw L., Martone P. T., Boucher, Y.  and Case R. J.  (2015). Ancient origin of the biosynthesis of lignin precursors. Biology Direct, 10 (23): 1–21.

16.   Mierziak J., Kostyn K., and Kulma A.  (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19 (10): 16240-16265.

17.   Abdullah F. I.  and Chua L. S. (2017). Prediction of c-glycosylated apigenin (Vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS. Frontiers in Biology, 12(6): 448-458.

18.   He M., Min J. W., Kong W. L., He X. H., Li J. X. and Peng B. W. (2016). A review on the pharmacological effects of Vitexin and Isovitexin. Fitoterapia, 115:74–85.

19.   Asmat-Campos D., Abreu A. C., Romero-Cano M. S., Urquiaga-Zavaleta J., Contreras-Cáceres R., Delfín-Narciso D., Juárez-Cortijo L., Nazario-Naveda R., Rengifo-Penadillos R. and Fernández I. (2020). Unraveling the active biomolecules responsible for the sustainable synthesis of nanoscale silver particles through nuclear magnetic resonance metabolomics. ACS Sustainable Chemistry & Engineering, 8(48): 17816-17827.

20.   Kamtekar S., Keer V. and Patil V. (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science, 4 (9): 1–65.

21.   Arifin R. N. A. R.  and Jumal J.  (2021). Antioxidant activity of Averrhoa bilimbi Linn. leaves extract using two different types of solvents. Malaysian Journal of Science, Health & Technology, 7: 76–82.

22.   Perera B. R. and Kandiah M.  (2018). Microwave assisted one-pot green synthesis of silver nanoparticles using leaf extracts from Vigna unguiculate: evaluation of antioxidant and antimicrobial activities. International Journal of Interdisciplinary and Multidisciplinary Studies, 5(2): 62-78.

23.   Karalija E., Muratović E., Tarkowski P., and Zeljković S. Ć. (2017). Variation in phenolic composition of Knautia arvensis in correlation with geographic area and plant organ. Natural Product Communications, 12(4): 545-548.

24.   Kalia A., Manchanda P., Bhardwaj S. and Singh G. (2020). Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorganic and Nano-Metal Chemistry, 50(11): 1053-1062.

25.   Ovais M., Khalil A., Islam N., Ahmad I., Ayaz M., Saravanan M., Shinwari Z. and Mukherjee S.  (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102(16): 6799–6814.

26.   Borhamdin S., Shamsuddin M. and Alizadeh A. (2016). Biostabilised icosahedral gold nanoparticles: synthesis, cyclic voltammetric studies and catalytic activity towards 4-nitrophenol reduction. Journal of Experimental Nanoscience, 11(7): 518-530.